Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18118, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103402

RESUMO

Breast cancer is among the highest morbidity and mortality rates in women around the world. In the present investigation we aimed to synthesis novel nanosystem combining two naturally important anticancer agents with different mechanism of action namely Moringa oleifera and caffeine. Firstly, chemical analysis of Moringa oleifera extract and caffeine was done by gas chromatography-mass spectroscopy (GC-MS) in order to assess the main chemical compounds present and correlate between them and the possible anticancer effect. The novel nanosystem was characterized through dynamic light scattering techniques which revealed the stability and homogeneity of the prepared M. oleifera leaves extract/Caffeine loaded chitosan nanoparticles, while FTIR and transmission electron microscope (TEM) proved the shape and the successful incorporation of M. oleifera leaves extract/Caffeine onto the nanochitosan carrier. Our initial step was to assess the anticancer effect in vitro in cancer cell line MCF-7 which proved the significant enhanced effect of M. oleifera leaves extract/Caffeine nanosystem compared to M. oleifera leaves extract or caffeine loaded nanoparticles. Further studies were conducted in vivo namely tumor biomarkers, tumor volume, bioluminescence imaging, molecular and histopathological investigations. The present study proved the potent anticancer effect of the synthesized M. oleifera leaves extract/Caffeine loaded chitosan nanoparticles. Mo/Caf/CsNPs exhibited a large number of apoptotic cells within the tumor mass while the adipose tissue regeneration was higher compared to the positive control. The prepared nanoparticles downregulated the expression of Her2, BRCA1 and BRCA2 while mTOR expression was upregulated. The aforementioned data demonstrated the successful synergistic impact of Moringa and caffeine in decreasing the carcinoma grade.


Assuntos
Proteína BRCA1 , Proteína BRCA2 , Neoplasias da Mama , Cafeína , Quitosana , Nanopartículas , Extratos Vegetais , Folhas de Planta , Receptor ErbB-2 , Quitosana/química , Humanos , Cafeína/farmacologia , Cafeína/química , Nanopartículas/química , Folhas de Planta/química , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células MCF-7 , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Animais , Moringa oleifera/química , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
Sci Rep ; 14(1): 5324, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438447

RESUMO

Highly effective AgNPs@C was efficiently synthesized by electrical arc powered by single spark unit which was sufficient to ionize the dielectric media (deionized water) through applying strong electric field between the electrodes (silver and carbon). The AgNPs@C shell was characterized in terms of stability, morphology and phase structure. All characterizations showed that the prepared silver nanoparticles were spherical with average size reached 17 nm coated with carbon shell. The antibacterial effect of the synthesized nanoparticles was tested against Pseudomonas aeruginosa in comparison to Ceftazidime (commonly used antibiotic against P. aeruginosa infections). It was revealed that AgNPs@C shell has superior activity with inhibition zone diameter reached 15 mm and minimum inhibitory concentration reached 2 µg/mL. The observed activity was further confirmed by confocal microscope which showed an increased red region, representing the dead cells, correlated with the presence of AgNPs@C. Moreover, transmission electron microscope studies implied the possible AgNPs@C antibacterial mechanism of action was the nanoparticles adherence to the bacterial membrane causing cell lysis. The molecular studies against fimH (virulence adhesion gene), rmpA (mucoid factor encoding gene), and mrkA (biofilm forming gene) proved the inhibition of their genetic expression. The cytotoxic effect of the synthesized AgNPs@C showed CC50 reached 235.5 µg/mL against normal lung cells (L929 cell line).


Assuntos
Nanopartículas Metálicas , Prata/farmacologia , Antibacterianos/farmacologia , Biofilmes , Carbono
3.
Int J Radiat Biol ; 99(12): 1978-1989, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37382969

RESUMO

PURPOSE: Irradiation of food is promising for control of pests to minimize postharvest losses of yields and thus improvement of food safety, shelf life of produce. It is a method of choice that induces a series of lethal biochemical and molecular changes culminating into the engagement of a downstream cascade to cause abnormalities in irradiated pests. In this study, the effects of iodine-131 (131I) isotope radiation on the male gonad development of the migratory locust, Locusta migratoria, were evaluated. MATERIALS AND METHODS: Newly emerged adult male locusts, less than one-day-old, were divided into two groups, control and irradiated. Locusts in the control group (n = 20 insects) didn't drink irradiated water and were reared under normal environmental conditions for one week. Locusts in the irradiated group (n = 20 insects) were exposed to irradiated water at a dose of 30 mCi and they were subsequently observed until they drank the whole quantity. RESULTS: At the end of the experiment, scanning and electron microscopic examination of testes obtained from irradiated locusts revealed several major abnormalities, including malformed nuclei of spermatozoa, irregular plasma membranes, shrinkage of testicular follicles, vacuolated cytoplasm, disintegrated nebenkern and agglutinations of spermatids. Flow cytometry analysis revealed that 131I radiation induced both early and late apoptosis, but not necrosis, in testicular tissues. Testes of irradiated insects also exhibited a burst in reactive oxygen species (ROS), as indicated by significant elevation in amounts of malondialdehyde (MDA), a marker for peroxidation of lipids. In contrast, irradiation coincided with significant reductions in activities of enzymatic antioxidant biomarkers. Relative to controls, a three-fold upregulation of expression of mRNA of heat shock protein, Hsp90, was observed in testicular tissue of irradiated locusts. 131I-irradiated insects exhibited genotoxicity, as indicated by significant increases in various indicators of DNA damage by the comet assay, including tail length (7.80 ± 0.80 µm; p < .01), olive tail moment (40.37 ± 8.08; p < .01) and tail DNA intensity % (5.1 ± 0.51; p < .01), in testicular cells compared to the controls. CONCLUSION: This is the first report on elucidation of I131-irradiation-mediated histopathological, biochemical and molecular mechanisms in gonads of male L. migratoria. Herein, the findings underscore the utility of 131I radiation as an eco-friendly postharvest strategy for management of insect pests and in particular for control of populations of L. migratoria.


Assuntos
Locusta migratoria , Animais , Masculino , Locusta migratoria/química , Locusta migratoria/genética , Conservação dos Recursos Naturais , Água
4.
Biology (Basel) ; 11(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36290298

RESUMO

Myositis tropicans or pyomyositis is a muscle inflammation resulting from a bacterial infection of skeletal muscle (commonly caused by Staphylococcus aureus) that usually leads to hematogenous muscle seeding. The present study was designed to estimate the role of ZnO-NPs and a physiotherapeutic program in the management of induced biceps femoris atrophy in rats through histological, biochemical, and radiological examinations at different time intervals. At the beginning, several bacterial strains were evaluated through a proteolytic enzyme activity assay and the highest activity was recorded with the Staphylococcus aureus strain. ZnO-NPs were synthesized with the arc discharge method with an average size of 19.4 nm. The antibacterial activity of ZnO-NPs was investigated and it was revealed that the prepared ZnO-NPs showed a minimum inhibitory concentration of 8 µg/mL against the tested bacterium. The cytotoxicity of the prepared ZnO-NPs was tested in C2C12 myoblast cells, and it was elaborated that CC50 was 344.16 µg/mL. Biceps femoris pyomyositis was induced with a potent strain (Staphylococcus aureus); then, a physiotherapeutic program combined with the prepared ZnO-NPs treatment protocol was applied and evaluated. The combined program claimed antibacterial properties, preventing muscle atrophy, and resulted in the most comparable value of muscle mass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA