Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(10): 2479-2492, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462592

RESUMO

Bisphenol A (BPA), known for its endocrine-disrupting properties and potential to leach into food products, has led to significant food safety concerns. Therefore, the development of sensitive and selective BPA rapid detection methods is crucial. In this study, molecularly imprinted solid-phase extraction coupled to a colorimetric method was adopted for the smartphone-based determination of BPA. The molecularly imprinted polymer (MIP) was prepared via photopolymerization and used as a selective adsorbent material for SPE columns. The solid-phase extraction (SPE) columns with multiple cycles significantly reduced the extraction time to only 30 min. The developed method demonstrates useful sensitivity for BPA (LOD = 30 ppb). Furthermore, BPA migration from plastic packaging was evaluated under different storage conditions, revealing that microwave treatment for 5 min led to BPA release from polycarbonate packaging in juice and basic solutions. The MIP selective extraction/clean-up and smartphone-based optical sensor were successfully applied to BPA standard solutions and complex food samples (e.g., juice and tap water), resulting in reproducible and selective BPA determination (RSD ≤ 6%, n = 3). This rapid and cost-effective method of producing MIPs for BPA offers a promising solution for fast and low-cost sensing for on-site fresh food analysis.


Assuntos
Impressão Molecular , Fenóis , Impressão Molecular/métodos , Smartphone , Extração em Fase Sólida/métodos , Água , Compostos Benzidrílicos/análise , Polímeros Molecularmente Impressos
2.
Talanta ; 269: 125488, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071768

RESUMO

Maleic hydrazide (MH) is a plant growth regulator, herbicide, and sprout inhibitor used to improve the growth and quality of certain vegetables and fruits, unfortunately, MH has genotoxic and carcinogenic effects; thus, MH residues in food need to be analyzed. Herein, magnetic molecularly imprinted polymers (MagMIP) were synthesized by radical polymerization in just 30 min using a microwave for rapid and selective extraction of MH. The colorimetric detection of MH using the immobilized Folin Ciocalteau's reagent (FCR) on 96-well microplate via smartphone sensor exhibits useful sensitivity for MH with a limit of detection (LOD = 0.6 ppm) which is far lower than the maximum residue limits (higher than 5 ppm). The immobilized FCR was stored dry at two different storage conditions at +4 °C and room temperature without losing its performance over six months. The coupling MagMIP-extraction/clean-up and smartphone determination were tested towards food samples (i.e., potatoes, and carrots), obtaining good recovery (79-96 %), high repeatability (RSD 4.5 %; n = 10), and high selectivity for MH determination.


Assuntos
Hidrazida Maleica , Impressão Molecular , Hidrazida Maleica/análise , Polímeros Molecularmente Impressos , Smartphone , Colorimetria , Fenômenos Magnéticos , Extração em Fase Sólida , Adsorção
3.
RSC Adv ; 13(18): 12438-12454, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37091621

RESUMO

The COVID-19 pandemic is the largest global public health outbreak in the 21st century so far. It has contributed to a significant increase in the generation of waste, particularly personal protective equipment and hazardous medical, as it can contribute to environmental pollution and expose individuals to various hazards. To minimize the risk of infection, the entire surrounding environment should be disinfected or neutralized regularly. Effective medical waste management can add value by reducing the spread of COVID-19 and increasing the recyclability of materials instead of sending them to landfill. Developing an antiviral coating for the surface of objects frequently used by the public could be a practical solution to prevent the spread of virus particles and the inactivation of virus transmission. Relying on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to address this emergency. Here, through a multidisciplinary perspective encompassing various fields such as virology, biology, medicine, engineering, chemistry, materials science, and computer science, we describe how nanotechnology-based strategies can support the fight against COVID-19 well as infectious diseases in general, including future pandemics. In this review, the design of the antiviral coating to combat the spread of COVID-19 was discussed, and technological attempts to minimize the coronavirus outbreak were highlighted.

4.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677761

RESUMO

Aflatoxins (AFs) are fungi secondary metabolites produced by the Aspergillus family. These compounds can enter the food chain through food contamination, representing a risk to human health. Commercial immunoaffinity columns are widely used for the extraction and cleanup of AFs from food samples; however, their high cost and large solvent consumption create a need for alternative strategies. In this work, an alternative strategy for producing molecularly imprinted polymers (MIPs) was proposed to extract aflatoxins AFB1, AFB2, AFG1, and AFG2 from complex food samples, using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The MIPs were synthesized via a low-cost and rapid (5 min) sonochemical free-radical polymerization, using 1-hydroxy-2-naphthoic acid as a dummy template. MIPs-based solid phase extraction performance was tested on 17 dietary supplements (vegetables, fruits, and cereals), obtaining appreciable recovery rates (65-90%) and good reproducibility (RSD ≤ 6%, n = 3); the selectivity towards other mycotoxins was proved and the data obtained compared with commercial immunoaffinity columns. The proposed strategy can be considered an alternative affordable approach to the classical immunoaffinity columns, since it is more selective and better performing.


Assuntos
Aflatoxinas , Contaminação de Alimentos , Aflatoxinas/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Contaminação de Alimentos/análise , Polímeros Molecularmente Impressos/análise , Reprodutibilidade dos Testes , Extração em Fase Sólida , Espectrometria de Massas em Tandem/métodos
5.
Materials (Basel) ; 15(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363243

RESUMO

Monitoring synthetic colorants in foods is important due to their potential toxicity and pathogenicity. We propose here a new and simple method for the extraction and determination of erythrosine B (ERT-B) in food samples. A composite of polydopamine-based molecularly imprinted polymers coating magnetic nanoparticles (Fe3O4@PDA@MIP) was synthesized using a green approach and exploited for the magnetic dispersive solid-phase extraction (MDSPE) of ERT-B. Fe3O4@PDA@MIP provides a rapid extraction of ERT-B, exhibiting good reusability and preconcentration ability. Moreover, the MIP showed a relatively good imprinting factor (3.0 ± 0.05), demonstrating excellent selectivity against patent blue (an interfering dye) and other food matrix components. The proposed MDSPE was coupled to colorimetric smartphone-based detection that allowed us to obtain similar performances of UV-Vis spectroscopy detection. The smartphone-based optical detection facilitated the determination of ERT-B in the 0.5-10 mg/L range, with a limit of detection of 0.04 mg/L. The developed method was successfully employed to determine ERT-B in food samples (juice, candy, and candied cherries) with good recovery values (82-97%).

6.
Virol J ; 19(1): 167, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280866

RESUMO

The rise of the highly lethal severe acute respiratory syndrome-2 (SARS-2) as corona virus 2019 (COVID-19) reminded us of the history of other pandemics that happened in the last century (Spanish flu) and stayed in the current century, which include Severe-Acute-Respiratory-Syndrome (SARS), Middle-East-Respiratory-Syndrome (MERS), Corona Virus 2019 (COVID-19). We review in this report the newest findings and data on the origin of pandemic respiratory viral diseases, reservoirs, and transmission modes. We analyzed viral adaption needed for host switch and determinants of pathogenicity, causative factors of pandemic viruses, and symptoms and clinical manifestations. After that, we concluded the host factors associated with pandemics morbidity and mortality (immune responses and immunopathology, ages, and effect of pandemics on pregnancy). Additionally, we focused on the burdens of COVID-19, non-pharmaceutical interventions (quarantine, mass gatherings, facemasks, and hygiene), and medical interventions (antiviral therapies and vaccines). Finally, we investigated the nanotechnology between COVID-19 analysis and immune system boosting (Nanoparticles (NPs), antimicrobial NPs as antivirals and immune cytokines). This review presents insights about using nanomaterials to treat COVID-19, improve the bioavailability of the abused drugs, diminish their toxicity, and improve their performance.


Assuntos
COVID-19 , Influenza Pandêmica, 1918-1919 , Coronavírus da Síndrome Respiratória do Oriente Médio , História do Século XX , Humanos , Pandemias , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Antivirais/uso terapêutico , Nanotecnologia , Sistema Imunitário , Citocinas
7.
Microb Pathog ; 171: 105747, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36064102

RESUMO

Human papillomavirus (HPV) is the most prevalent sexually transmitted disease in the world. Even though preventive vaccines against HPV are effective, the effective treatment of HPV infections is much less satisfactory due to multi-drug resistance and secondary adverse effects. Nanotechnology was employed for the delivery of anti-cancer drugs to increase the effectiveness of the treatment and minimize the side effects. Nanodelivery of both preventive and therapeutic HPV vaccines has also been studied to boost vaccine efficacy. Overall, such developments suggest that the nanoparticle-based vaccine might emerge as the most cost-effective way to prevent and treat HPV cancer, assisted or combined with another nanotechnology-based therapy. This review focuses on the current knowledge on pathogenesis and vaccines against HPV, highlighting the current value and perspective regarding the widespread diffusion of HPV vaccines-based nanomaterials. The ongoing advancements in the design of vaccines-based nanomaterials are expanding their therapeutic roles against HPV.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Nanotecnologia , Papillomaviridae
8.
Microb Pathog ; 170: 105721, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35970290

RESUMO

Antimicrobial agents and alternative strategies to combat bacterial infections have become urgent due to the rapid development of multidrug-resistant bacteria caused by the misuse and overuse of antibiotics, as well as the ineffectiveness of antibiotics against difficult-to-treat infectious diseases. Nanobiotics is one of the strategies being explored to counter the increase in antibiotic-resistant bacteria. Nanobiotics are antibiotic molecules encapsulated in nanoparticles or artificially engineered pure antibiotics that are ≤ 100 nm in size in at least one dimension. Formulation scientists recognize nanobiotic delivery systems as an effective strategy to overcome the limitations associated with conventional antibiotic therapy. This review highlights the general mechanisms by which nanobiotics can be used to target resistant microbes and biofilm-associated infections. We focus on the design elements, properties, characterization, and toxicity assessment of organic nanoparticles, inorganic nanoparticle and molecularly imprinted polymer-based nano-formulations that can be designed to improve the efficacy of nanobiotic formulation.


Assuntos
Infecções Bacterianas , Nanopartículas , Antibacterianos , Infecções Bacterianas/tratamento farmacológico , Biofilmes , Sistemas de Liberação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Humanos
9.
Talanta ; 240: 123195, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990987

RESUMO

Several methods involving molecularly imprinted polymers (MIPs) devoted to extracting and analyzing sulfonamides from different matrices are reported in literature; however, the unresolved analytical issue is obtaining intra-class selectivity between sulfonamides. Here is presented for the first time a method coupling MIPs and enzymatic inhibition assay for the sensitive and selective determination of acetazolamide (ACZ) in biological samples. The MIPs were synthesized by thermal initiated polymerization in acetone, using acrylamide as functional monomer, ethylene glycol dimethacrylate as cross-linker and ACZ as template molecule. The developed MIPs/enzymatic inhibition based rapid colorimetric method was applied for the determination of ACZ in biological samples. The MIPs were used as sorbent phase in dispersive solid-phase extraction (MIPs-dSPE), and the optimal working parameters were selected. Liquid chromatography-tandam mass spectrometry (LC-MS/MS) analysis confirmed the MIPs ability to extract ACZ. Finally, to obtain a selective and sensitive method, the MIPs-dSPE was combined with an enzymatic inhibition colorimetric assay based on the carbonic anhydrase, an enzyme inhibited by specific sulfonamides. The developed combined method allowed the determination of ACZ in serum, blood and Diamox (a drug containing ACZ), with good recovery (85-96%). Furthermore, a significant correlation with LC-MS/MS analysis was achieved, with relative error ≤15%. In the proposed strategy, the double selectivity giving by MIPs and enzymatic inhibition allowed to obtain a method able to determine selectively ACZ in biological and pharmaceutical samples quantitatively.


Assuntos
Impressão Molecular , Acetazolamida , Adsorção , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Polímeros Molecularmente Impressos , Polímeros , Extração em Fase Sólida , Espectrometria de Massas em Tandem
10.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361757

RESUMO

Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Impressão Molecular/métodos , Polímeros Molecularmente Impressos/síntese química , Animais , Toxinas Bacterianas/análise , Análise de Alimentos/instrumentação , Inocuidade dos Alimentos/métodos , Humanos , Micotoxinas/análise , Praguicidas/análise , Polimerização , Extração em Fase Sólida/métodos , Drogas Veterinárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...