Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 9(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535452

RESUMO

Ulcerative colitis (UC) is characterized by modifying alternatively activated macrophages (AAM) and epithelial homeostasis. Chromogranin-A (CHGA), released by enterochromaffin cells, is elevated in UC and is implicated in inflammation progression. CHGA can be cleaved into several derived peptides, including pancreastatin (PST), which is involved in proinflammatory mechanisms. Previously, we showed that the deletion of Chga decreased the onset and severity of colitis correlated with an increase in AAM and epithelial cells' functions. Here, we investigated PST activity in colonic biopsies of participants with active UC and investigated PST treatment in dextran sulfate sodium (DSS)-induced colitis using Chga-/- mice, macrophages, and a human colonic epithelial cells line. We found that the colonic protein expression of PST correlated negatively with mRNA expression of AAM markers and tight junction (TJ) proteins and positively with mRNA expression of interleukin (IL)-8, IL18, and collagen in human. In a preclinical setting, intra-rectal administration of PST aggravated DSS-induced colitis by decreasing AAM's functions, enhancing colonic collagen deposition and disrupting epithelial homeostasis in Chga+/+ and Chga-/- mice. This effect was associated with a significant reduction in AAM markers, increased colonic IL-18 release, and decreased TJ proteins' gene expression. In vitro, PST reduced Chga+/+ and Chga-/- AAM polarization and decreased anti-inflammatory mediators' production. Conditioned medium harvested from PST-treated Chga+/+ and Chga-/- AAM reduced Caco-2 cell migration, viability, proliferation, and mRNA levels of TJ proteins and increased oxidative stress-induced apoptosis and proinflammatory cytokines release. In conclusion, PST is a CHGA proinflammatory peptide that enhances the severity of colitis and the inflammatory process via decreasing AAM functions and disrupting epithelial homeostasis.

2.
Biochem Pharmacol ; 166: 264-273, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31170375

RESUMO

Semaphorin 3E (SEMA3E) has emerged as an axon-guiding molecule that regulates various biological processes including the immune responses and apoptosis. However, its role in the pathophysiology of colitis remains elusive. We investigated the role of SEMA3E in intestinal epithelial cells (IECs) activation, using biopsies from patients with active ulcerative colitis (UC), a mouse model of UC, and an in-vitro model of intestinal mucosal healing. In this study, we confirmed that the mRNA level of SEMA3E is reduced significantly in patients with UC and demonstrated a negative linear association between SEMA3E mRNA and p53-associated genes. In mice, genetic deletion of Sema3e resulted in an increase onset and severity of colitis, p53-associated genes, apoptosis, and IL-1beta production. Recombinant SEMA3E treatment protected against colitis and decreased these effects. Furthermore, in stimulated epithelial cells, recombinant SEMA3E treatment enhanced wound healing, resistance to oxidative stress and decreased apoptosis and p53-associated genes. Together, these findings identify SEMA3E as a novel regulator in intestinal inflammation that regulates IECs apoptosis and suggest a potential novel approach to treat UC.


Assuntos
Apoptose/fisiologia , Colite/metabolismo , Mucosa Intestinal/metabolismo , Semaforinas/metabolismo , Animais , Células CACO-2 , Colite/genética , Colite/patologia , Humanos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Semaforinas/genética
3.
Front Immunol ; 8: 985, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28871257

RESUMO

While there is growing awareness of a relationship between chromogranin-A (CHGA) and susceptibility to inflammatory conditions, the role of human catestatin [(hCTS); CHGA352-67] in the natural history of established inflammatory bowel disease is not known. Recently, using two different experimental models, we demonstrated that hCTS-treated mice develop less severe acute colitis. We have also shown the implication of the macrophages in this effect. The aims of this study were to determine (1) whether hCTS treatment could attenuate the reactivation of inflammation in adult mice with previously established chronic colitis; (2) whether this effect is mediated through macrophages or the gut microbiota. Quiescent colitis was induced in 7-8-week-old C57BL6 mice using four cycles (2-4%) of dextran sulfate sodium. hCTS (1.5 mg/kg/day) treatment or vehicle started 2 days before the last induction of colitis and continuing for 7 days. At sacrifice, macro- and microscopic scores were determined. Colonic pro-inflammatory cytokines [interleukin (IL)-6, IL-1ß, and TNF- α], anti-inflammatory cytokines (IL-10, TGF- ß), classically activated (M1) (iNOS, Mcp1), and alternatively activated (M2) (Ym1, Arg1) macrophages markers were studied using ELISA and/or RT-qPCR. In vitro, peritoneal macrophages isolated from naïve mice and treated with hCTS (10-5 M, 12 h) were exposed to either lipopolysaccharide (100 ng/ml, 12 h) to polarize M1 macrophages or to IL-4/IL-13 (20 ng/ml) to polarize M2 macrophages. M1/M2 macrophage markers along with cytokine gene expression were determined using RT-qPCR. Feces and mucosa-associated microbiota (MAM) samples were collected, and the V4 region of 16 s rRNA was sequenced. Micro- and macroscopic scores, colonic IL-6, IL-1ß, TNF- α, and M1 macrophages markers were significantly decreased in the hCTS-treated group. Treatment did not have any effect on colonic IL-10, TGF-ß, and M2 markers nor modified the bacterial richness, diversity, or the major phyla in colitic fecal and MAM samples. In vitro, pro-inflammatory cytokines levels, as well as their gene expression, were significantly reduced in hCTS-treated M1 macrophages. hCTS treatment did not affect M2 macrophage markers. These findings suggest that hCTS treatment attenuates the severity of inflammatory relapse through the modulation of the M1 macrophages and the release of pro-inflammatory cytokines.

4.
Biochem Pharmacol ; 145: 102-113, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827109

RESUMO

Chromogranin-A (CHGA) is a prohormone secreted by neuroendocrine cells and is a precursor of several bioactive peptides, which are implicated in different and distinctive biological and immune functions. Chromofungin (CHR: CHGA47-66) is a short peptide with antimicrobial effects and encodes from CHGA exon-IV. Inflammatory bowel disease (IBD) is characterized by alterations in the activation of pro-inflammatory pathways, pro-inflammatory macrophages (M1), and nuclear transcription factor kappa B (NF-κB) signaling leading to the perpetuation of the inflammatory process. Here, we investigated the activity of CHR (CHGA Exon-IV) in persons with active ulcerative colitis (UC) and the underlying mechanisms in dextran sulfate sodium (DSS)-colitis in regard to macrophages activation and migration. Tissue mRNA expression of CHR (CHGA Exon-IV) was down regulated in active UC compared to healthy individuals and negatively correlated with pro-inflammatory macrophages (M1) cytokines, toll-like receptors (TLR)-4, and pNF-κB activity. In DSS colitis, CHR (CHGA Exon-IV) expression was reduced, and exogenous CHR treatment decreased the severity of colitis associated with a reduction of M1 macrophages markers and pNF-κB. In vitro, CHR treatment reduced macrophages migration, decreased pro-inflammatory cytokines production and pNF-κB. Targeting CHR may represent a promising new direction in research to define new therapeutic targets and biomarkers associated with IBD.


Assuntos
Cromogranina A/metabolismo , Cromogranina A/farmacologia , Colite Ulcerativa/metabolismo , Inflamação/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , NF-kappa B/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Animais , Colite/induzido quimicamente , Sulfato de Dextrana/toxicidade , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...