Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angiogenesis ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771392

RESUMO

Induced pluripotent stem cell (iPSC) derived endothelial cells (iECs) have emerged as a promising tool for studying vascular biology and providing a platform for modelling various vascular diseases, including those with genetic origins. Currently, primary ECs are the main source for disease modelling in this field. However, they are difficult to edit and have a limited lifespan. To study the effects of targeted mutations on an endogenous level, we generated and characterized an iPSC derived model for venous malformations (VMs). CRISPR-Cas9 technology was used to generate a novel human iPSC line with an amino acid substitution L914F in the TIE2 receptor, known to cause VMs. This enabled us to study the differential effects of VM causative mutations in iECs in multiple in vitro models and assess their ability to form vessels in vivo. The analysis of TIE2 expression levels in TIE2L914F iECs showed a significantly lower expression of TIE2 on mRNA and protein level, which has not been observed before due to a lack of models with endogenous edited TIE2L914F and sparse patient data. Interestingly, the TIE2 pathway was still significantly upregulated and TIE2 showed high levels of phosphorylation. TIE2L914F iECs exhibited dysregulated angiogenesis markers and upregulated migration capability, while proliferation was not affected. Under shear stress TIE2L914F iECs showed reduced alignment in the flow direction and a larger cell area than TIE2WT iECs. In summary, we developed a novel TIE2L914F iPSC-derived iEC model and characterized it in multiple in vitro models. The model can be used in future work for drug screening for novel treatments for VMs.

2.
iScience ; 26(1): 105740, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36594014

RESUMO

The function of the cancer-associated lncRNA Malat1 during aging is as-of-yet uncharacterized. Here, we show that Malat1 interacts with Nucleophosmin (NPM) in young mouse brain, and with Lamin A/C, hnRNP C, and KAP1 with age. RNA-seq and RT-qPCR reveal a persistent expression of Malat1_2 (the 3'isoform of Malat1) in Malat1Δ1 (5'-1.5 kb deletion) mouse retinas and brains at 1/4th level of the full-length Malat1, while Malat1_1 (the 5'isoform) in Malat1Δ2 (deletion of 3'-conserved 5.7 kb) at a much lower level, suggesting an internal promoter driving the 3' isoform. The 1774 and 496 differentially expressed genes in Malat1Δ2 and Malat1Δ1 brains, respectively, suggest the 3' isoform regulates gene expression in trans and the 5' isoform in cis. Consistently, Malat1Δ2 mice show increased age-dependent retinal oxidative stress and corneal opacity, while Malat1Δ1 mice show no obvious phenotype. Collectively, this study reveals a physiological function of the lncRNA Malat1 3'-isoform during the aging process.

3.
Cell Death Dis ; 13(8): 713, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35973994

RESUMO

FOXA2 has been known to play important roles in liver functions in rodents. However, its role in human hepatocytes is not fully understood. Recently, we generated FOXA2 mutant induced pluripotent stem cell (FOXA2-/-iPSC) lines and illustrated that loss of FOXA2 results in developmental defects in pancreatic islet cells. Here, we used FOXA2-/-iPSC lines to understand the role of FOXA2 on the development and function of human hepatocytes. Lack of FOXA2 resulted in significant alterations in the expression of key developmental and functional genes in hepatic progenitors (HP) and mature hepatocytes (MH) as well as an increase in the expression of ER stress markers. Functional assays demonstrated an increase in lipid accumulation, bile acid synthesis and glycerol production, while a decrease in glucose uptake, glycogen storage, and Albumin secretion. RNA-sequencing analysis further validated the findings by showing a significant increase in genes associated with lipid metabolism, bile acid secretion, and suggested the activation of hepatic stellate cells and hepatic fibrosis in MH lacking FOXA2. Overexpression of FOXA2 reversed the defective phenotypes and improved hepatocyte functionality in iPSC-derived hepatic cells lacking FOXA2. These results highlight a potential role of FOXA2 in regulating human hepatic development and function and provide a human hepatocyte model, which can be used to identify novel therapeutic targets for FOXA2-associated liver disorders.


Assuntos
Estresse do Retículo Endoplasmático , Fígado Gorduroso , Fator 3-beta Nuclear de Hepatócito , Células-Tronco Pluripotentes Induzidas , Ácidos e Sais Biliares/metabolismo , Diferenciação Celular/genética , Fígado Gorduroso/genética , Genes Controladores do Desenvolvimento , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/metabolismo
4.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35409379

RESUMO

Gene expression is controlled by epigenetic deregulation, a hallmark of cancer. The DNA methylome of canine diffuse large B-cell lymphoma (cDLBCL), the most frequent malignancy of B-lymphocytes in dog, has recently been investigated, suggesting that aberrant hypermethylation of CpG loci is associated with gene silencing. Here, we used a multi-omics approach (DNA methylome, transcriptome and copy number variations) combined with functional in vitro assays, to identify putative tumour suppressor genes subjected to DNA methylation in cDLBCL. Using four cDLBCL primary cell cultures and CLBL-1 cells, we found that CiDEA, MAL and PCDH17, which were significantly suppressed in DLBCL samples, were hypermethylated and also responsive (at the DNA, mRNA and protein level) to pharmacological unmasking with hypomethylating drugs and histone deacetylase inhibitors. The regulatory mechanism underneath the methylation-dependent inhibition of those target genes expression was then investigated through luciferase and in vitro methylation assays. In the most responsive CpG-rich regions, an in silico analysis allowed the prediction of putative transcription factor binding sites influenced by DNA methylation. Interestingly, regulatory elements for AP2, MZF1, NF-kB, PAX5 and SP1 were commonly identified in all three genes. This study provides a foundation for characterisation and experimental validation of novel epigenetically-dysregulated pathways in cDLBCL.


Assuntos
Variações do Número de Cópias de DNA , Metilação de DNA , Animais , Linhagem Celular Tumoral , Ilhas de CpG , Cães , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genes Supressores de Tumor
5.
Mol Syst Biol ; 17(9): e10105, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34528760

RESUMO

Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in such states remain poorly understood. Here, we construct quantitative models of the time-dependent transcriptional variation of patient-derived glioblastoma (GBM) cells. We build the models by sampling and profiling barcoded GBM cells and their progeny over the course of 3 weeks and by fitting a mathematical model to estimate changes in GBM cell states and their growth rates. Our model suggests a hierarchical yet plastic organization of GBM, where the rates and patterns of cell state switching are partly patient-specific. Therapeutic interventions produce complex dynamic effects, including inhibition of specific states and altered differentiation. Our method provides a general strategy to uncover time-dependent changes in cancer cells and offers a way to evaluate and predict how therapy affects cell state composition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Glioblastoma/genética , Humanos , Recidiva Local de Neoplasia , Análise de Célula Única
6.
PLoS One ; 16(7): e0253178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34232958

RESUMO

Bladder cancer, one of the most prevalent malignancies worldwide, remains hard to classify due to a staggering molecular complexity. Despite a plethora of diagnostic tools and therapies, it is hard to outline the key steps leading up to the transition from high-risk non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC). Carcinogen-induced murine models can recapitulate urothelial carcinogenesis and natural anti-tumor immunity. Herein, we have developed and profiled a novel model of progressive NMIBC based on 10 weeks of OH-BBN exposure in hepatocyte growth factor/cyclin dependent kinase 4 (R24C) (Hgf-Cdk4R24C) mice. The profiling of the model was performed by histology grading, single cell transcriptomic and proteomic analysis, while the derivation of a tumorigenic cell line was validated and used to assess in vivo anti-tumor effects in response to immunotherapy. Established NMIBC was present in females at 10 weeks post OH-BBN exposure while neoplasia was not as advanced in male mice, however all mice progressed to MIBC. Single cell RNA sequencing analysis revealed an intratumoral heterogeneity also described in the human disease trajectory. Moreover, although immune activation biomarkers were elevated in urine during carcinogen exposure, anti-programmed cell death protein 1 (anti-PD1) monotherapy did not prevent tumor progression. Furthermore, anti-PD1 immunotherapy did not control the growth of subcutaneous tumors formed by the newly derived urothelial cancer cell line. However, treatment with CpG-oligodeoxynucleotides (ODN) significantly decreased tumor volume, but only in females. In conclusion, the molecular map of this novel preclinical model of bladder cancer provides an opportunity to further investigate pharmacological therapies ahead with regards to both targeted drugs and immunotherapies to improve the strategies of how we should tackle the heterogeneous tumor microenvironment in urothelial bladder cancer to improve responses rates in the clinic.


Assuntos
Cálculos da Bexiga Urinária/metabolismo , Animais , Butilidroxibutilnitrosamina/farmacologia , Carcinógenos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Proteinúria/urina , Proteômica/métodos , Análise de Sequência de RNA , Análise de Célula Única , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Cálculos da Bexiga Urinária/induzido quimicamente , Cálculos da Bexiga Urinária/urina , Urotélio/efeitos dos fármacos , Urotélio/metabolismo , Urotélio/patologia
7.
Cell Rep ; 32(2): 107897, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668248

RESUMO

Glioblastoma (GBM) is a malignant brain tumor with few therapeutic options. The disease presents with a complex spectrum of genomic aberrations, but the pharmacological consequences of these aberrations are partly unknown. Here, we report an integrated pharmacogenomic analysis of 100 patient-derived GBM cell cultures from the human glioma cell culture (HGCC) cohort. Exploring 1,544 drugs, we find that GBM has two main pharmacological subgroups, marked by differential response to proteasome inhibitors and mutually exclusive aberrations in TP53 and CDKN2A/B. We confirm this trend in cell and in xenotransplantation models, and identify both Bcl-2 family inhibitors and p53 activators as potentiators of proteasome inhibitors in GBM cells. We can further predict the responses of individual cell cultures to several existing drug classes, presenting opportunities for drug repurposing and design of stratified trials. Our functionally profiled biobank provides a valuable resource for the discovery of new treatments for GBM.


Assuntos
Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Terapia de Alvo Molecular , Medicina de Precisão , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bortezomib/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Heterogeneidade Genética , Genoma Humano , Glioblastoma/genética , Humanos , Camundongos Endogâmicos BALB C , Mutação/genética , Inibidores de Proteassoma/farmacologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
8.
Animals (Basel) ; 10(4)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325906

RESUMO

The increasing demand for more animal products put pressure on improving livestock production efficiency and sustainability. In this context, advanced animal nutrition studies appear indispensable. Here, the effect of grape pomace (GP), the polyphenol-rich agricultural by-product, was evaluated on Holstein-Friesian cows' whole-blood transcriptome, milk production and composition. Two experimental groups were set up. The first one received a basal diet and served as a control, while the second one received a 7.5% GP-supplemented diet for a total of 60 days. Milk production and composition were not different between the group; however, the transcriptome analysis revealed a total of 40 genes significantly affected by GP supplementation. Among the most interesting down-regulated genes, we found the DnaJ heat-shock protein family member A1 (DNAJA1), the mitochondrial fission factor (MFF), and the impact RWD domain protein (IMPACT) genes. The gene set enrichment analysis evidenced the positive enrichment of 'interferon alpha (IFN-α) and IFN-γ response', 'IL6-JAK-STAT3 signaling' and 'complement' genes. Moreover, the functional analysis denoted positive enrichment of the 'response to protozoan' and 'negative regulation of viral genome replication' biological processes. Our data provide an overall view of the blood transcriptomic signature after a 60-day GP supplementation in dairy cows which mainly reflects a GP-induced immunomodulatory effect.

9.
Nat Commun ; 11(1): 71, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900415

RESUMO

Despite advances in the molecular exploration of paediatric cancers, approximately 50% of children with high-risk neuroblastoma lack effective treatment. To identify therapeutic options for this group of high-risk patients, we combine predictive data mining with experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, TargetTranslator, integrates data from tumour biobanks, pharmacological databases, and cellular networks to predict how targeted interventions affect mRNA signatures associated with high patient risk or disease processes. We find more than 80 targets to be associated with neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines derived from high-risk patients to demonstrate reversal of risk signatures and malignant phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as promising candidates for the treatment of high-risk neuroblastoma. We expect that our method, available as a public tool (targettranslator.org), will enhance and expedite the discovery of risk-associated targets for paediatric and adult cancers.


Assuntos
Antineoplásicos/administração & dosagem , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Neuroblastoma/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
10.
Animals (Basel) ; 9(11)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731565

RESUMO

The effects of iodine supplementation on the whole-transcriptome of dairy cow using RNA sequencing has been investigated in this study. Iodine did not influence the milk composition, while an improvement was observed in the immune response as well as in the quality of dairy product. Indeed, the iodine intake specifically influenced the expression of 525 genes and the pathway analysis demonstrated that the most affected among them were related to immune response and oxidative stress. As a consequence, we indirectly showed a better response to bacterial infection because of the reduction of somatic cell counts; furthermore, an improvement of dairy product quality was observed since lipid oxidation reduced in fresh cheese. Such findings, together with the higher milk iodine content, clearly demonstrated that iodine supplementation in dairy cow could represent a beneficial practice to preserve animal health and to improve the nutraceutical properties of milk and its derived products.

11.
PLoS One ; 14(4): e0215154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017932

RESUMO

The genomic landscape in human B-cell lymphoma has revealed several somatic mutations and potentially relevant germline alterations affecting therapy and prognosis. Also, mutations originally described as somatic aberrations have been shown to confer cancer predisposition when occurring in the germline. The relevance of mutations in canine B-cell lymphoma is scarcely known and gene expression profiling has shown similar molecular signatures among different B-cell histotypes, suggesting other biological mechanisms underlining differences. Here, we present a highly accurate approach to identify single nucleotide variants (SNVs) in RNA-seq data obtained from 62 completely staged canine B-cell lymphomas and 11 normal B-cells used as controls. A customized variant discovery pipeline was applied and SNVs were found in tumors and differentiated for histotype. A number of known and not previously identified SNVs were significantly associated to MAPK signaling pathway, negative regulation of apoptotic process and cell death, B-cell activation, NF-kB and JAK-STAT signaling. Interestingly, no significant genetic fingerprints were found separating diffuse large B-cell lymphoma from indolent lymphomas suggesting that differences of genetic landscape are not the pivotal causative factor of indolent behavior. We also detected several variants in expressed regions of canine B-cell lymphoma and identified SNVs having a direct impact on genes. Using this brand-new approach the consequence of a gene variant is directly associated to expression. Further investigations are in progress to deeply elucidate the mechanisms by which altered genes pathways may drive lymphomagenesis and a higher number of cases is also demanded to confirm this evidence.


Assuntos
Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Linfoma de Células B/genética , Linfoma de Células B/patologia , Mutação , Animais , Estudos de Casos e Controles , Cães , Perfilação da Expressão Gênica
12.
Vet Comp Oncol ; 17(3): 308-316, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30805995

RESUMO

Canine malignant melanoma (MM) is a highly aggressive tumour with a low survival rate and represents an ideal spontaneous model for the human counterpart. Considerable progress has been recently obtained, but the therapeutic success for canine melanoma is still challenging. Little is known about the mechanisms beyond pathogenesis and melanoma development, and the molecular response to radiotherapy has never been explored before. A faster and deeper understanding of cancer mutational processes and developing mechanisms are now possible through next generation sequencing technologies. In this study, we matched whole exome and transcriptome sequencing in four dogs affected by MM at diagnosis and at disease progression to identify possible genetic mechanisms associated with therapy failure. According to previous studies, a genetic similarity between canine MM and its human counterpart was observed. Several somatic mutations were functionally related to MAPK, PI3K/AKT and p53 signalling pathways, but located in genes other than BRAF, RAS and KIT. At disease progression, several mutations were related to therapy effects. Natural killer cell-mediated cytotoxicity and several immune-system-related pathways resulted activated opening a new scenario on the microenvironment in this tumour. In conclusion, this study suggests a potential role of the immune system associated to radiotherapy in canine melanoma, but a larger sample size associated with functional studies are needed.


Assuntos
Doenças do Cão/radioterapia , Melanoma/veterinária , Transcriptoma/efeitos da radiação , Animais , Sequência de Bases , Aberrações Cromossômicas , Cães , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Masculino , Melanoma/radioterapia , Mutação
13.
Sci Rep ; 8(1): 17107, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459395

RESUMO

G-quadruplexes (G4) are secondary nucleic acid structures that have been associated with genomic instability and cancer progression. When present in the promoter of some oncogenes, G4 structures can affect gene regulation and, hence, represent a possible therapeutic target. In this study, RNA-Seq was used to explore the effect of a G4-binding anthraquinone derivative, named AQ1, on the whole-transcriptome profiles of two common cell models for the study of KIT pathways; the human mast cell leukemia (HMC1.2) and the canine mast cell tumor (C2). The highest non-cytotoxic dose of AQ1 (2 µM) resulted in 5441 and 1201 differentially expressed genes in the HMC1.2 and C2 cells, respectively. In both cell lines, major pathways such as cell cycle progression, KIT- and MYC-related pathways were negatively enriched in the AQ1-treated group, while other pathways such as p53, apoptosis and hypoxia-related were positively enriched. These findings suggest that AQ1 treatment induces a similar functional response in the human and canine cell models, and provide news insights into using dogs as a reliable translational model for studying G4-binding compounds.


Assuntos
Antraquinonas/farmacologia , Quadruplex G/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia de Mastócitos/patologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Cães , Humanos , Técnicas In Vitro , Leucemia de Mastócitos/tratamento farmacológico , Leucemia de Mastócitos/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células Tumorais Cultivadas
14.
Animals (Basel) ; 8(11)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30360570

RESUMO

Grape pomace (GPO), the main by-product of the wine making process, is a rich source of polyphenols with potent antioxidant properties. Recently, GPO has emerged as a potential feed additive in livestock nutrition, with several reports describing its beneficial effects on animals' overall health status or production traits. However, little is known about it from a molecular biology standpoint. In the present study, we report the first RNA sequencing-based whole-transcriptome profiling of Friesian calves fed with a GPO-supplemented diet. We identified 367 differentially expressed genes (p < 0.05) in the GPO-supplemented calves (n = 5), when compared with unsupplemented control group (n = 5). The pathway analysis showed that 'cholesterol lipid biosynthesis' was the most negatively-enriched (p < 0.001) pathway in the GPO-supplemented animals. In specific terms, five important genes coding for cholesterol biosynthesis enzymes, namely the Farnesyl-diphosphate Farnesyltransferase 1 (FDFT-1), Squalene Epoxidase (SQLE), NAD(P)-dependent Steroid Dehydrogenase-like (NSDHL), Methylsterol Monooxygenase (MSMO)-1, and Sterol-C5-desaturase (SC5D), two major transcription factors (the Sterol Regulatory Element-binding Transcription Factor 1 and 2), as well as the Low-Density Lipoprotein Receptor (LDLR), were all downregulated following GPO supplementation. Such an effect was mirrored by a reduction of blood cholesterol levels (p = 0.07) and a lowered (p < 0.001) Malondialdehyde (lipid oxidation marker) level in carcasses. We provide evidence on the effects of GPO-supplemented diets on the whole-transcriptome signature in veal calves, which mainly reflects an antioxidant activity.

15.
Res Vet Sci ; 113: 40-49, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28863307

RESUMO

Bovine primary cultured hepatocytes (CHs) are widely used in vitro models for liver toxicity testing. However, little is known about their whole-transcriptome profile and its resemblance to the normal liver tissue. In the present study, we profiled - by microarray - the whole-transcriptome of bovine CHs (n=4) and compared it with the transcriptomic landscape of control liver samples (n=8), as well the Madin-Darby bovine kidney (MDBK) cells (n=4). Compared with liver tissue, the bovine CHs relatively expressed (fold change >2, P<0.05) about 2155 and 2073 transcripts at a lower and higher abundance, respectively. Of those expressed at a lower abundance, many were drug biotransformation enzyme-coding genes, such as the cytochrome P450 family (CYPs), sulfotransferases, methyltransferases, and glutathione S-transferases. Also, several drug transporters and solute carriers were expressed at a lower abundance in bovine CHs. 'Drug metabolism', 'PPAR signaling', and 'metabolism of xenobiotics by CYPs' were among the most negatively-enriched pathways in bovine CHs compared with liver. A qPCR cross-validation using 8 selected genes evidenced a high correlation (r=0.95, P=0.001) with the corresponding microarray results. Although from a kidney origin, and albeit to a lower extent compared to bovine CHs, the MDBK cells showed a basal expression of many CYP-coding genes. Our study provides a whole-transcriptome-based evidence for the bovine CHs and hepatic tissue resemblance. Overall, the bovine CHs' transcriptomic profile might render it unreliable as an in vitro model to study drug metabolism.


Assuntos
Bovinos/genética , Hepatócitos/metabolismo , Fígado/metabolismo , Transcriptoma , Animais , Bovinos/metabolismo , Linhagem Celular , Células Cultivadas
16.
Steroids ; 106: 1-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26581765

RESUMO

We investigated the transcriptomic signature of some anabolic steroids in cattle. Our main objective was to evaluate the effect of a combined trenbolone acetate (TBA, 200mg) and estradiol-17ß (E2, 40 mg) implant (Revalor-XS®, REV) on the transcriptome of muscle (target tissue for anabolic steroids) and liver (main biotransformation site). Transcriptomic profiling was performed on 60 samples (30 per tissue) representing 2 groups of animals: REV (sustained release implant for 71 days, n=15), and a control group (CTR, n=15). The analyses (REV vs. CTR) evidenced the differential expression of 431 (down-regulated) and 503 transcripts (268 up-regulated and 235 down-regulated) in muscle and liver tissues, respectively. Functional annotation showed the enrichment of several ion transport systems (cation, metal ion and potassium ion transport) in muscle, while revealing the enrichment of carbohydrate, protein and glycoprotein metabolism and biosynthesis mechanisms in the liver. Both tissues had 20 genes commonly expressed in-between. Seven randomly-selected genes showed positive correlation with their corresponding microarray data upon a qPCR cross-validation step. In muscle, but not the liver, Principal Component Analysis (PCA) on the microarray data resulted in the separation of treated animals from the untreated ones (first 2 components=97.87%.). Overall, the identification of different genes, pathways and biological processes has illustrated the distinctive transcriptomic profile of muscle and liver in response to anabolic steroids. Moreover, it is becoming more clear that anabolic steroids are working through a complex interaction of numerous pathways and processes incorporating different tissues.


Assuntos
Estradiol/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo , Transcriptoma/efeitos dos fármacos , Acetato de Trembolona/farmacologia , Animais , Biomarcadores/metabolismo , Bovinos , Interações Medicamentosas , Fenótipo , Fatores de Tempo
17.
Artigo em Inglês | MEDLINE | ID: mdl-26161592

RESUMO

Growth promoters (GPs) such as the glucocorticoid dexamethasone (DEX) and the ß-adrenergic agonist clenbuterol (CLEN) are still used abusively in beef cattle production. Transcriptomic markers for indirect detection of such GPs have been discussed in either experimentally treated animals or commercial samples separately. In the present study we examine the transcriptomic signature of DEX alone or in combination with CLEN in skeletal muscle of experimentally treated beef cattle, and, furthermore, compare them with previously screened commercial samples from a field-monitoring study, as well as with proteomics data representing the same set of samples. Using DNA microarray technology, transcriptomic profiling was performed on 12 samples representing three groups of animals: DEX (0.75 mg/animal/day, n = 4), a combination of DEX (0.66 mg/animal/day) and CLEN (from 2 to 6 mg/animal/day, n = 4) and a control group (n = 4). Analyses showed the differential expression of 198 and 39 transcripts in DEX and DEX-CLEN groups, respectively. Both groups had no common modulated genes in between, neither with the proteomics data. Sixteen candidate genes were validated via qPCR. They showed high correlation with the corresponding microarray data. Principal component analysis (PCA) on both the qPCR and normalised microarray data resulted in the separation of treated animals from the untreated ones. Interestingly, all the PCA plots grouped the DEX-positive samples (experimental or commercial) apart from each other. In brief, this study provides some interesting glucocorticoid-responsive biomarkers whose expression was contradictory to what is reported in human studies. Additionally, this study points out the transcriptomic signature dissimilarity between commercial and experimentally treated animals.


Assuntos
Dexametasona/administração & dosagem , Dexametasona/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Biomarcadores/análise , Bovinos , Clembuterol/administração & dosagem , Clembuterol/farmacologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Carne Vermelha , Reprodutibilidade dos Testes
18.
Oncol Rep ; 34(1): 495-503, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26063116

RESUMO

Indole-3-carbinol (I3C) and diindolylmethane (DIM), found in cruciferous vegetables, have chemopreventive and anticancer properties. In the present study, 14 substituted indoles were tested for activity against SW480 colon cancer cells. Among these, 3-(2-bromoethyl)-indole, named BEI-9, showed the greatest inhibition. The effects of BEI-9 on cancer cells were analyzed by MTS and CellTiter-Glo assays for effects on cell viability, by microscopy for phenotypic changes, by scratch wound assays for effects on migration, by flow cytometry for changes in the cell cycle, by immunoblotting for cyclin D and A to assess effects on cell cycle regulation, and by NF-κB reporter assays for effects on basal and drug-induced NF-κB activation. BEI-9 inhibited the growth of SW480 and HCT116 colon cancer cells at concentrations of 12.5 and 5 µM, respectively. BEI-9 also inhibited cell motility as determined with scratch wound assays, and reduced the levels of cyclin D1 and A. Furthermore, in reporter cells, BEI-9 (0.8 µM) inhibited basal and induced NF-κB activation and increased cell death when combined with the cytokine TNFα or the drug camptothecin (CPT), both of which activate NF-κB. Preliminary experiments to identify a safe dose range for immunodeficient mice showed that BEI-9, administered intraperitoneally, was tolerable at doses below 10 mg/kg. Thus, BEI-9 and other indole derivatives may be useful in chemoprevention or as chemosensitizers. Since NF-κB activation is implicated in carcinogenesis and in reducing sensitivity to anticancer drugs, BEI-9 should be investigated in combination with drugs such as CPT, which activate NF-κB.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Indóis/administração & dosagem , NF-kappa B/metabolismo , Animais , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células Hep G2 , Humanos , Indóis/farmacologia , Injeções Intraperitoneais , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...