Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 784: 147168, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088056

RESUMO

Today more than one billion people are living in coastal regions, and coastal urbanization is rapidly growing worldwide. Here, we explore the impact of an extreme and rapid coastal urbanization on temperature patterns, based on MODIS data. We study Dubai, one of the fastest growing cities in the world over the last two decades. Dubai's urbanization centers along its coastline - in land, massive skyscrapers and infrastructure have been built, while in sea, just nearby, unique artificial islands have been constructed. Studying the coastline during the years of intense urbanization, we show that the coastline exhibits surface urban heat island characteristics, where the urban center experiences higher temperatures, by as much as 2.5 °C and more, compared to the adjacent less urbanized zones. During development, the coastal surface urban heat island has nearly doubled its size, expanding towards the newly developed areas. This newly developed zone also exhibits the largest temperature trend along the coast of over 0.1 °C/year on average. In addition, an opposite linear relation was found between the surface temperature and albedo trends. In sea, temperature decreases were observed, particularly over the artificial islands, exceeding -0.1 °C/year, in one of them. The positive trends in land along with the negative trends in sea decreased the coastal sea-land temperature gradient by up to about -30% in only 12 years, which also decreased the land breeze intensity. The findings shown here directly affect the local coastal population and ecosystem, exacerbate the thermal comfort, and add additional burden to this area, which is already considered as one of the warmest in the world.

2.
Nature ; 588(7838): 442-444, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33299177

RESUMO

Humanity has become a dominant force in shaping the face of Earth1-9. An emerging question is how the overall material output of human activities compares to the overall natural biomass. Here we quantify the human-made mass, referred to as 'anthropogenic mass', and compare it to the overall living biomass on Earth, which currently equals approximately 1.1 teratonnes10,11. We find that Earth is exactly at the crossover point; in the year 2020 (± 6), the anthropogenic mass, which has recently doubled roughly every 20 years, will surpass all global living biomass. On average, for each person on the globe, anthropogenic mass equal to more than his or her bodyweight is produced every week. This quantification of the human enterprise gives a mass-based quantitative and symbolic characterization of the human-induced epoch of the Anthropocene.


Assuntos
Biomassa , Internacionalidade , Vida , Manufaturas/análise , Manufaturas/provisão & distribuição , Animais , Materiais de Construção/análise , Atividades Humanas , Humanos , Plantas
3.
Sci Total Environ ; 726: 137925, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32305748

RESUMO

The Middle East region suffers from high levels of air pollution originating from both Saharan/Arabian mineral dust particles and pollution from East Europe. A recent extreme autumn dust storm, originating from the Middle East, highlights the potential of a new aerosol source in the region. By studying the trends of daily regional synoptic systems through the 21st century, we show that dust-affiliated systems are projected to increase significantly, i.e. Red-Sea-Trough from 35.0 to 41.6% during autumn, for RCP8.5. Whereas, rain-affiliated ones are projected to decrease (for Cyprus Lows group from 18.7 to 12.5%). Here, it is suggested that those trends, along with increased anthropogenic activities, may result in the formation of a consistent new aerosol source in the area, which could influence life in the region. This is supported by a recent study showing an increase in dust deposition over the region.

4.
Aerosol Air Qual Res ; 17(1): 253-261, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29670645

RESUMO

Version 1 of the NASA MERRA Aerosol Reanalysis (MERRAero) assimilates bias-corrected aerosol optical depth (AOD) data from MODIS-Terra and MODIS-Aqua, and simulates particulate matter (PM) concentration data to reproduce a consistent database of AOD and PM concentration around the world from 2002 to the end of 2015. The purpose of this paper is to evaluate MERRAero's simulation of fine PM concentration against surface measurements in two regions of the world with relatively high levels of PM concentration but with profoundly different PM composition, those of Israel and Taiwan. Being surrounded by major deserts, Israel's PM load is characterized by a significant contribution of mineral dust, and secondary contributions of sea salt particles, given its proximity to the Mediterranean Sea, and sulfate particles originating from Israel's own urban activities and transported from Europe. Taiwan's PM load is composed primarily of anthropogenic particles (sulfate, nitrate and carbonaceous particles) locally produced or transported from China, with an additional contribution of springtime transport of mineral dust originating from Chinese and Mongolian deserts. The evaluation in Israel produced favorable results with MERRAero slightly overestimating measurements by 6% on average and reproducing an excellent year-to-year and seasonal fluctuation. The evaluation in Taiwan was less favorable with MERRAero underestimating measurements by 42% on average. Two likely reasons explain this discrepancy: emissions of anthropogenic PM and their precursors are largely uncertain in China, and MERRAero doesn't include nitrate particles in its simulation, a pollutant of predominately anthropogenic sources. MERRAero nevertheless simulates well the concentration of fine PM during the summer, when Taiwan is least affected by the advection of pollution from China.

5.
Urban Clim ; 20: 168-191, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29683129

RESUMO

NASA recently extended the Modern-Era Retrospective Analysis for Research and Application (MERRA) with an atmospheric aerosol reanalysis which includes five particulate species: sulfate, organic matter, black carbon, mineral dust and sea salt. The MERRA Aerosol Reanalysis (MERRAero) is an innovative tool to study air quality issues around the world for its global and constant coverage and its distinction of aerosol speciation expressed in the form of aerosol optical depth (AOD). The purpose of this manuscript is to apply MERRAero to the study of urban air pollution at the global scale by analyzing the AOD over a period of 13 years (2003-2015) and over a selection of 200 of the world's most populated cities in order to assess the impacts of urbanization, industrialization, air quality regulations and regional transport which affect urban aerosol load. Environmental regulations and the recent global economic recession have helped to decrease the AOD and sulfate aerosols in most cities in North America, Europe and Japan. Rapid industrialization in China over the last two decades resulted in Chinese cities having the highest AOD values in the world. China has nevertheless recently implemented emission control measures which are showing early signs of success in many cities of Southern China where AOD has decreased substantially over the last 13 years. The AOD over South American cities, which is dominated by carbonaceous aerosols, has also decreased over the last decade due to an increase in commodity prices which slowed deforestation activities in the Amazon rainforest. At the opposite, recent urbanization and industrialization in India and Bangladesh resulted in a strong increase of AOD, sulfate and carbonaceous aerosols in most cities of these two countries. The AOD over most cities in Northern Africa and Western Asia changed little over the last decade. Emissions of natural aerosols, which cities in these two regions tend to be mostly composed of, don't tend to fluctuate significantly on an annual basis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...