Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Proteome Res ; 22(12): 3773-3779, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910793

RESUMO

Accurate measurements of the molecular composition of single cells will be necessary for understanding the relationship between gene expression and function in diverse cell types. One of the most important phenotypes that differs between cells is their size, which was recently shown to be an important determinant of proteome composition in populations of similarly sized cells. We, therefore, sought to test if the effects of the cell size on protein concentrations were also evident in single-cell proteomics data. Using the relative concentrations of a set of reference proteins to estimate a cell's DNA-to-cell volume ratio, we found that differences in the cell size explain a significant amount of cell-to-cell variance in two published single-cell proteome data sets.


Assuntos
Proteoma , Proteoma/metabolismo , Tamanho Celular , Fenótipo
2.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37905015

RESUMO

Cell size is tightly controlled in healthy tissues and single-celled organisms, but it remains unclear how size influences cell physiology. Increasing cell size was recently shown to remodel the proteomes of cultured human cells, demonstrating that large and small cells of the same type can be biochemically different. Here, we corroborate these results in mouse hepatocytes and extend our analysis using yeast. We find that size-dependent proteome changes are highly conserved and mostly independent of metabolic state. As eukaryotic cells grow larger, the dilution of the genome elicits a starvation-like proteome phenotype, suggesting that growth in large cells is limited by the genome in a manner analogous to a limiting nutrient. We also demonstrate that the proteomes of replicatively-aged yeast are primarily determined by their large size. Overall, our data suggest that genome concentration is a universal determinant of proteome content in growing cells.

3.
Microbiome ; 11(1): 176, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550758

RESUMO

BACKGROUND: The high diversity and complexity of the microbial community make it a formidable challenge to identify and quantify the large number of proteins expressed in the community. Conventional metaproteomics approaches largely rely on accurate identification of the MS/MS spectra to their corresponding short peptides in the digested samples, followed by protein inference and subsequent taxonomic and functional analysis of the detected proteins. These approaches are dependent on the availability of protein sequence databases derived either from sample-specific metagenomic data or from public repositories. Due to the incompleteness and imperfections of these protein sequence databases, and the preponderance of homologous proteins expressed by different bacterial species in the community, this computational process of peptide identification and protein inference is challenging and error-prone, which hinders the comparison of metaproteomes across multiple samples. RESULTS: We developed metaSpectraST, an unsupervised and database-independent metaproteomics workflow, which quantitatively profiles and compares metaproteomics samples by clustering experimentally observed MS/MS spectra based on their spectral similarity. We applied metaSpectraST to fecal samples collected from littermates of two different mother mice right after weaning. Quantitative proteome profiles of the microbial communities of different mice were obtained without any peptide-spectrum identification and used to evaluate the overall similarity between samples and highlight any differentiating markers. Compared to the conventional database-dependent metaproteomics analysis, metaSpectraST is more successful in classifying the samples and detecting the subtle microbiome changes of mouse gut microbiomes post-weaning. metaSpectraST could also be used as a tool to select the suitable biological replicates from samples with wide inter-individual variation. CONCLUSIONS: metaSpectraST enables rapid profiling of metaproteomic samples quantitatively, without the need for constructing the protein sequence database or identification of the MS/MS spectra. It maximally preserves information contained in the experimental MS/MS spectra by clustering all of them first and thus is able to better profile the complex microbial communities and highlight their functional changes, as compared with conventional approaches. tag the videobyte in this section as ESM4 Video Abstract.


Assuntos
Microbiota , Espectrometria de Massas em Tandem , Animais , Camundongos , Fluxo de Trabalho , Proteômica , Microbiota/genética , Peptídeos
4.
J Leukoc Biol ; 114(5): 387-403, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37201912

RESUMO

Systemic juvenile idiopathic arthritis is a chronic pediatric inflammatory disease of unknown etiology, characterized by fever, rash, hepatosplenomegaly, serositis, and arthritis. We hypothesized that intercellular communication, mediated by extracellular vesicles, contributes to systemic juvenile idiopathic arthritis pathogenesis and that the number and cellular sources of extracellular vesicles would differ between inactive and active states of systemic juvenile idiopathic arthritis and healthy controls. We evaluated plasma from healthy pediatric controls and patients with systemic juvenile idiopathic arthritis with active systemic flare or inactive disease. We isolated extracellular vesicles by size exclusion chromatography and determined total extracellular vesicle abundance and size distribution using microfluidic resistive pulse sensing. Cell-specific extracellular vesicle subpopulations were measured by nanoscale flow cytometry. Isolated extracellular vesicles were validated using a variety of ways, including nanotracking and cryo-electron microscopy. Extracellular vesicle protein content was analyzed in pooled samples using mass spectrometry. Total extracellular vesicle concentration did not significantly differ between controls and patients with systemic juvenile idiopathic arthritis. Extracellular vesicles with diameters <200 nm were the most abundant, including the majority of cell-specific extracellular vesicle subpopulations. Patients with systemic juvenile idiopathic arthritis had significantly higher levels of extracellular vesicles from activated platelets, intermediate monocytes, and chronically activated endothelial cells, with the latter significantly more elevated in active systemic juvenile idiopathic arthritis relative to inactive disease and controls. Protein analysis of isolated extracellular vesicles from active patients showed a proinflammatory profile, uniquely expressing heat shock protein 47, a stress-inducible protein. Our findings indicate that multiple cell types contribute to altered extracellular vesicle profiles in systemic juvenile idiopathic arthritis. The extracellular vesicle differences between systemic juvenile idiopathic arthritis disease states and healthy controls implicate extracellular vesicle-mediated cellular crosstalk as a potential driver of systemic juvenile idiopathic arthritis disease activity.


Assuntos
Artrite Juvenil , Vesículas Extracelulares , Humanos , Criança , Microscopia Crioeletrônica , Células Endoteliais , Monócitos
5.
Mol Cell ; 82(24): 4627-4646.e14, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36417913

RESUMO

Cell lineage specification is accomplished by a concerted action of chromatin remodeling and tissue-specific transcription factors. However, the mechanisms that induce and maintain appropriate lineage-specific gene expression remain elusive. Here, we used an unbiased proteomics approach to characterize chromatin regulators that mediate the induction of neuronal cell fate. We found that Tip60 acetyltransferase is essential to establish neuronal cell identity partly via acetylation of the histone variant H2A.Z. Despite its tight correlation with gene expression and active chromatin, loss of H2A.Z acetylation had little effect on chromatin accessibility or transcription. Instead, loss of Tip60 and acetyl-H2A.Z interfered with H3K4me3 deposition and activation of a unique subset of silent, lineage-restricted genes characterized by a bivalent chromatin configuration at their promoters. Altogether, our results illuminate the mechanisms underlying bivalent chromatin activation and reveal that H2A.Z acetylation regulates neuronal fate specification by establishing epigenetic competence for bivalent gene activation and cell lineage transition.


Assuntos
Cromatina , Histonas , Histonas/genética , Histonas/metabolismo , Acetilação , Ativação Transcricional , Cromatina/genética , Processamento de Proteína Pós-Traducional , Nucleossomos
6.
Front Cell Dev Biol ; 10: 980721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36133920

RESUMO

Increasing cell size drives changes to the proteome, which affects cell physiology. As cell size increases, some proteins become more concentrated while others are diluted. As a result, the state of the cell changes continuously with increasing size. In addition to these proteomic changes, large cells have a lower growth rate (protein synthesis rate per unit volume). That both the cell's proteome and growth rate change with cell size suggests they may be interdependent. To test this, we used quantitative mass spectrometry to measure how the proteome changes in response to the mTOR inhibitor rapamycin, which decreases the cellular growth rate and has only a minimal effect on cell size. We found that large cell size and mTOR inhibition, both of which lower the growth rate of a cell, remodel the proteome in similar ways. This suggests that many of the effects of cell size are mediated by the size-dependent slowdown of the cellular growth rate. For example, the previously reported size-dependent expression of some senescence markers could reflect a cell's declining growth rate rather than its size per se. In contrast, histones and other chromatin components are diluted in large cells independently of the growth rate, likely so that they remain in proportion with the genome. Finally, size-dependent changes to the cell's growth rate and proteome composition are still apparent in cells continually exposed to a saturating dose of rapamycin, which indicates that cell size can affect the proteome independently of mTORC1 signaling. Taken together, our results clarify the dependencies between cell size, growth, mTOR activity, and the proteome remodeling that ultimately controls many aspects of cell physiology.

7.
Mol Cell ; 82(17): 3255-3269.e8, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987199

RESUMO

Cell size is tightly controlled in healthy tissues, but it is unclear how deviations in cell size affect cell physiology. To address this, we measured how the cell's proteome changes with increasing cell size. Size-dependent protein concentration changes are widespread and predicted by subcellular localization, size-dependent mRNA concentrations, and protein turnover. As proliferating cells grow larger, concentration changes typically associated with cellular senescence are increasingly pronounced, suggesting that large size may be a cause rather than just a consequence of cell senescence. Consistent with this hypothesis, larger cells are prone to replicative, DNA-damage-induced, and CDK4/6i-induced senescence. Size-dependent changes to the proteome, including those associated with senescence, are not observed when an increase in cell size is accompanied by an increase in ploidy. Together, our findings show how cell size could impact many aspects of cell physiology by remodeling the proteome and provide a rationale for cell size control and polyploidization.


Assuntos
Senescência Celular , Proteoma , Tamanho Celular , Senescência Celular/fisiologia , Dano ao DNA , Proteoma/genética
8.
Ann Neurol ; 92(2): 279-291, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35466441

RESUMO

OBJECTIVE: Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD), is a severe pediatric disorder of uncertain etiology resulting in hypothalamic dysfunction and frequent sudden death. Frequent co-occurrence of neuroblastic tumors have fueled suspicion of an autoimmune paraneoplastic neurological syndrome (PNS); however, specific anti-neural autoantibodies, a hallmark of PNS, have not been identified. Our objective is to determine if an autoimmune paraneoplastic etiology underlies ROHHAD. METHODS: Immunoglobulin G (IgG) from pediatric ROHHAD patients (n = 9), non-inflammatory individuals (n = 100) and relevant pediatric controls (n = 25) was screened using a programmable phage display of the human peptidome (PhIP-Seq). Putative ROHHAD-specific autoantibodies were orthogonally validated using radioactive ligand binding and cell-based assays. Expression of autoantibody targets in ROHHAD tumor and healthy brain tissue was assessed with immunohistochemistry and mass spectrometry, respectively. RESULTS: Autoantibodies to ZSCAN1 were detected in ROHHAD patients by PhIP-Seq and orthogonally validated in 7/9 ROHHAD patients and 0/125 controls using radioactive ligand binding and cell-based assays. Expression of ZSCAN1 in ROHHAD tumor and healthy human brain tissue was confirmed. INTERPRETATION: Our results support the notion that tumor-associated ROHHAD syndrome is a pediatric PNS, potentially initiated by an immune response to peripheral neuroblastic tumor. ZSCAN1 autoantibodies may aid in earlier, accurate diagnosis of ROHHAD syndrome, thus providing a means toward early detection and treatment. This work warrants follow-up studies to test sensitivity and specificity of a novel diagnostic test. Last, given the absence of the ZSCAN1 gene in rodents, our study highlights the value of human-based approaches for detecting novel PNS subtypes. ANN NEUROL 2022;92:279-291.


Assuntos
Doenças do Sistema Nervoso Autônomo , Doenças do Sistema Endócrino , Doenças Hipotalâmicas , Síndromes Paraneoplásicas do Sistema Nervoso , Autoanticorpos , Criança , Humanos , Doenças Hipotalâmicas/genética , Hipoventilação/genética , Ligantes , Síndromes Paraneoplásicas do Sistema Nervoso/diagnóstico , Síndrome
9.
Nat Commun ; 13(1): 888, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173144

RESUMO

Celiac disease (CeD) is an autoimmune disorder induced by consuming gluten proteins from wheat, barley, and rye. Glutens resist gastrointestinal proteolysis, resulting in peptides that elicit inflammation in patients with CeD. Despite well-established connections between glutens and CeD, chemically defined, bioavailable peptides produced from dietary proteins have never been identified from humans in an unbiased manner. This is largely attributable to technical challenges, impeding our knowledge of potentially diverse peptide species that encounter the immune system. Here, we develop a liquid chromatographic-mass spectrometric workflow for untargeted sequence analysis of the urinary peptidome. We detect over 600 distinct dietary peptides, of which ~35% have a CeD-relevant T cell epitope and ~5% are known to stimulate innate immune responses. Remarkably, gluten peptides from patients with CeD qualitatively and quantitatively differ from controls. Our results provide a new foundation for understanding gluten immunogenicity, improving CeD management, and characterizing the dietary and urinary peptidomes.


Assuntos
Doença Celíaca/imunologia , Glutens/análise , Proteoma/análise , Urina/química , Sequência de Aminoácidos , Doença Celíaca/patologia , Cromatografia Líquida , Epitopos de Linfócito T/imunologia , Glutens/imunologia , Glutens/metabolismo , Hordeum/química , Humanos , Espectrometria de Massas , Secale/química , Linfócitos T/imunologia , Triticum/química
10.
Cell Host Microbe ; 30(2): 260-272.e5, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35051349

RESUMO

Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias , Bacteroides , Fezes/microbiologia , Humanos , Camundongos
11.
Mol Cell Proteomics ; 21(3): 100204, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085787

RESUMO

Major histocompatibility complex class II (MHC-II) antigen presentation underlies a wide range of immune responses in health and disease. However, how MHC-II antigen presentation is regulated by the peptide-loading catalyst HLA-DM (DM), its associated modulator, HLA-DO (DO), is incompletely understood. This is due largely to technical limitations: model antigen-presenting cell (APC) systems that express these MHC-II peptidome regulators at physiologically variable levels have not been described. Likewise, computational prediction tools that account for DO and DM activities are not presently available. To address these gaps, we created a panel of single MHC-II allele, HLA-DR4-expressing APC lines that cover a wide range of DO:DM ratio states. Using a combined immunopeptidomic and proteomic discovery strategy, we measured the effects DO:DM ratios have on peptide presentation by surveying over 10,000 unique DR4-presented peptides. The resulting data provide insight into peptide characteristics that influence their presentation with increasing DO:DM ratios. These include DM sensitivity, peptide abundance, binding affinity and motif, peptide length, and choice of binding register along the source protein. These findings have implications for designing improved HLA-II prediction algorithms and research strategies for dissecting the variety of functions that different APCs serve in the body.


Assuntos
Apresentação de Antígeno , Antígenos HLA-D , Antígenos de Histocompatibilidade Classe II , Proteômica , Células Apresentadoras de Antígenos , Linhagem Celular , Antígenos HLA-DR , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Peptídeos/metabolismo
12.
Gut ; 71(3): 509-520, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33758004

RESUMO

OBJECTIVE: Primary sclerosing cholangitis (PSC) is in 70% of cases associated with inflammatory bowel disease. The hypermorphic T108M variant of the orphan G protein-coupled receptor GPR35 increases risk for PSC and ulcerative colitis (UC), conditions strongly predisposing for inflammation-associated liver and colon cancer. Lack of GPR35 reduces tumour numbers in mouse models of spontaneous and colitis associated cancer. The tumour microenvironment substantially determines tumour growth, and tumour-associated macrophages are crucial for neovascularisation. We aim to understand the role of the GPR35 pathway in the tumour microenvironment of spontaneous and colitis-associated colon cancers. DESIGN: Mice lacking GPR35 on their macrophages underwent models of spontaneous colon cancer or colitis-associated cancer. The role of tumour-associated macrophages was then assessed in biochemical and functional assays. RESULTS: Here, we show that GPR35 on macrophages is a potent amplifier of tumour growth by stimulating neoangiogenesis and tumour tissue remodelling. Deletion of Gpr35 in macrophages profoundly reduces tumour growth in inflammation-associated and spontaneous tumour models caused by mutant tumour suppressor adenomatous polyposis coli. Neoangiogenesis and matrix metalloproteinase activity is promoted by GPR35 via Na/K-ATPase-dependent ion pumping and Src activation, and is selectively inhibited by a GPR35-specific pepducin. Supernatants from human inducible-pluripotent-stem-cell derived macrophages carrying the UC and PSC risk variant stimulate tube formation by enhancing the release of angiogenic factors. CONCLUSIONS: Activation of the GPR35 pathway promotes tumour growth via two separate routes, by directly augmenting proliferation in epithelial cells that express the receptor, and by coordinating macrophages' ability to create a tumour-permissive environment.


Assuntos
Colangite Esclerosante/patologia , Colite Ulcerativa/patologia , Neoplasias do Colo/etiologia , Neovascularização Patológica/etiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Colangite Esclerosante/genética , Colite Ulcerativa/genética , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Macrófagos/fisiologia , Camundongos , Microambiente Tumoral
13.
Nature ; 600(7889): 494-499, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880498

RESUMO

Physical exercise is generally beneficial to all aspects of human and animal health, slowing cognitive ageing and neurodegeneration1. The cognitive benefits of physical exercise are tied to an increased plasticity and reduced inflammation within the hippocampus2-4, yet little is known about the factors and mechanisms that mediate these effects. Here we show that 'runner plasma', collected from voluntarily running mice and infused into sedentary mice, reduces baseline neuroinflammatory gene expression and experimentally induced brain inflammation. Plasma proteomic analysis revealed a concerted increase in complement cascade inhibitors including clusterin (CLU). Intravenously injected CLU binds to brain endothelial cells and reduces neuroinflammatory gene expression in a mouse model of acute brain inflammation and a mouse model of Alzheimer's disease. Patients with cognitive impairment who participated in structured exercise for 6 months had higher plasma levels of CLU. These findings demonstrate the existence of anti-inflammatory exercise factors that are transferrable, target the cerebrovasculature and benefit the brain, and are present in humans who engage in exercise.


Assuntos
Doença de Alzheimer , Encefalite , Doença de Alzheimer/metabolismo , Animais , Clusterina/genética , Clusterina/metabolismo , Células Endoteliais/metabolismo , Humanos , Camundongos , Proteômica
14.
Cell ; 184(16): 4137-4153.e14, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34256014

RESUMO

Diet modulates the gut microbiome, which in turn can impact the immune system. Here, we determined how two microbiota-targeted dietary interventions, plant-based fiber and fermented foods, influence the human microbiome and immune system in healthy adults. Using a 17-week randomized, prospective study (n = 18/arm) combined with -omics measurements of microbiome and host, including extensive immune profiling, we found diet-specific effects. The high-fiber diet increased microbiome-encoded glycan-degrading carbohydrate active enzymes (CAZymes) despite stable microbial community diversity. Although cytokine response score (primary outcome) was unchanged, three distinct immunological trajectories in high-fiber consumers corresponded to baseline microbiota diversity. Alternatively, the high-fermented-food diet steadily increased microbiota diversity and decreased inflammatory markers. The data highlight how coupling dietary interventions to deep and longitudinal immune and microbiome profiling can provide individualized and population-wide insight. Fermented foods may be valuable in countering the decreased microbiome diversity and increased inflammation pervasive in industrialized society.


Assuntos
Dieta , Microbioma Gastrointestinal , Imunidade , Biodiversidade , Fibras na Dieta/farmacologia , Comportamento Alimentar , Feminino , Alimentos Fermentados , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34117124

RESUMO

Environmental fluctuations are a common challenge for single-celled organisms; enteric bacteria such as Escherichia coli experience dramatic changes in nutrient availability, pH, and temperature during their journey into and out of the host. While the effects of altered nutrient availability on gene expression and protein synthesis are well known, their impacts on cytoplasmic dynamics and cell morphology have been largely overlooked. Here, we discover that depletion of utilizable nutrients results in shrinkage of E. coli's inner membrane from the cell wall. Shrinkage was accompanied by an ∼17% reduction in cytoplasmic volume and a concurrent increase in periplasmic volume. Inner membrane retraction after sudden starvation occurred almost exclusively at the new cell pole. This phenomenon was distinct from turgor-mediated plasmolysis and independent of new transcription, translation, or canonical starvation-sensing pathways. Cytoplasmic dry-mass density increased during shrinkage, suggesting that it is driven primarily by loss of water. Shrinkage was reversible: upon a shift to nutrient-rich medium, expansion started almost immediately at a rate dependent on carbon source quality. A robust entry into and recovery from shrinkage required the Tol-Pal system, highlighting the importance of envelope coupling during shrinkage and recovery. Klebsiella pneumoniae also exhibited shrinkage when shifted to carbon-free conditions, suggesting a conserved phenomenon. These findings demonstrate that even when Gram-negative bacterial growth is arrested, cell morphology and physiology are still dynamic.


Assuntos
Citoplasma/fisiologia , Escherichia coli/fisiologia , Carbono/deficiência , Carbono/farmacologia , Citoplasma/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Nitrogênio/análise , Fósforo/análise
16.
Front Immunol ; 12: 662443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936100

RESUMO

All nucleated mammalian cells express major histocompatibility complex (MHC) proteins that present peptides on cell surfaces for immune surveillance. These MHC-presented peptides (pMHC) are necessary for directing T-cell responses against cells harboring non-self antigens derived from pathogens or from somatic mutations. Alterations in tumor-specific antigen repertoires - particularly novel MHC presentation of mutation-bearing peptides (neoantigens) - can be potent targets of anti-tumor immune responses. Here we employed an integrated genomic and proteomic antigen discovery strategy aimed at measuring how interferon gamma (IFN-γ) alters antigen presentation, using a human lymphoma cell line, GRANTA-519. IFN-γ treatment resulted in 126 differentially expressed proteins (2% of all quantified proteins), which included components of antigen presentation machinery and interferon signaling pathways, and MHC molecules themselves. In addition, several proteasome subunits were found to be modulated, consistent with previous reports of immunoproteasome induction by IFN-γ exposure. This finding suggests that a modest proteomic response to IFN-γ could create larger alteration to cells' antigen/epitope repertoires. Accordingly, MHC immunoprecipitation followed by mass spectrometric analysis of eluted peptide repertoires revealed exclusive signatures of IFN-γ induction, with 951 unique peptides reproducibly presented by MHC-I and 582 presented by MHC-II. Furthermore, an additional set of pMHCs including several candidate neoantigens, distinguished control and the IFN-γ samples by their altered relative abundances. Accordingly, we developed a classification system to distinguish peptides which are differentially presented due to altered expression from novel peptides resulting from changes in antigen processing. Taken together, these data demonstrate that IFN-γ can re-shape antigen repertoires by identity and by abundance. Extending this approach to models with greater clinical relevance could help develop strategies by which immunopeptide repertoires are intentionally reshaped to improve endogenous or vaccine-induced anti-tumor immune responses and potentially anti-viral immune responses.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/isolamento & purificação , Genômica , Peptídeos/imunologia , Complexo de Endopeptidases do Proteassoma , Proteômica , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Epitopos/imunologia , Humanos , Interferon gama/farmacologia , Linfoma , Linfócitos T/imunologia
17.
Nat Immunol ; 22(6): 711-722, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34017121

RESUMO

Chromatin undergoes extensive reprogramming during immune cell differentiation. Here we report the repression of controlled histone H3 amino terminus proteolytic cleavage (H3ΔN) during monocyte-to-macrophage development. This abundant histone mark in human peripheral blood monocytes is catalyzed by neutrophil serine proteases (NSPs) cathepsin G, neutrophil elastase and proteinase 3. NSPs are repressed as monocytes mature into macrophages. Integrative epigenomic analysis reveals widespread H3ΔN distribution across the genome in a monocytic cell line and primary monocytes, which becomes largely undetectable in fully differentiated macrophages. H3ΔN is enriched at permissive chromatin and actively transcribed genes. Simultaneous NSP depletion in monocytic cells results in H3ΔN loss and further increase in chromatin accessibility, which likely primes the chromatin for gene expression reprogramming. Importantly, H3ΔN is reduced in monocytes from patients with systemic juvenile idiopathic arthritis, an autoinflammatory disease with prominent macrophage involvement. Overall, we uncover an epigenetic mechanism that primes the chromatin to facilitate macrophage development.


Assuntos
Artrite Juvenil/imunologia , Diferenciação Celular/imunologia , Epigênese Genética/imunologia , Histonas/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/imunologia , Adolescente , Artrite Juvenil/sangue , Artrite Juvenil/genética , Sistemas CRISPR-Cas/genética , Catepsina G/genética , Catepsina G/metabolismo , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Criança , Pré-Escolar , Cromatina/metabolismo , Ensaios Enzimáticos , Epigenômica , Feminino , Técnicas de Inativação de Genes , Humanos , Células Jurkat , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Leucócitos Mononucleares/imunologia , Macrófagos/metabolismo , Masculino , Mieloblastina/genética , Mieloblastina/metabolismo , Cultura Primária de Células , Proteólise , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células THP-1 , Adulto Jovem
18.
Philos Trans R Soc Lond B Biol Sci ; 376(1826): 20200127, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866806

RESUMO

Protein aggregation, particularly in its prion-like form, has long been thought to be detrimental. However, recent studies have identified multiple instances where protein aggregation is important for normal physiological functions. Combining mass spectrometry and cell biological approaches, we developed a strategy for the identification of protein aggregates in cell lysates. We used this approach to characterize prion-based traits in pathogenic strains of the yeast Saccharomyces cerevisiae isolated from immunocompromised human patients. The proteins that we found, including the metabolic enzyme Cdc19, the translation elongation factor Yef3 and the fibrillarin homologue Nop1, are known to assemble under certain physiological conditions. Yet, such assemblies have not been reported to be stable or heritable. Our data suggest that some proteins which aggregate in response to stress have the capacity to acquire diverse assembled states, certain ones of which can be propagated across generations in a form of protein-based epigenetics. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'


Assuntos
Proteínas de Ciclo Celular/metabolismo , Evolução Molecular , Proteínas Nucleares/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Príons/metabolismo , Piruvato Quinase/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Agregados Proteicos , Estresse Fisiológico
19.
Nat Commun ; 12(1): 1975, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785742

RESUMO

The steady-state size of bacterial cells correlates with nutrient-determined growth rate. Here, we explore how rod-shaped bacterial cells regulate their morphology during rapid environmental changes. We quantify cellular dimensions throughout passage cycles of stationary-phase cells diluted into fresh medium and grown back to saturation. We find that cells exhibit characteristic dynamics in surface area to volume ratio (SA/V), which are conserved across genetic and chemical perturbations as well as across species and growth temperatures. A mathematical model with a single fitting parameter (the time delay between surface and volume synthesis) is quantitatively consistent with our SA/V experimental observations. The model supports that this time delay is due to differential expression of volume and surface-related genes, and that the first division after dilution occurs at a tightly controlled SA/V. Our minimal model thus provides insight into the connections between bacterial growth rate and cell shape in dynamic environments.


Assuntos
Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Proteômica/métodos , Algoritmos , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Proteínas de Bactérias/genética , Divisão Celular/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Cinética , Modelos Teóricos , Propriedades de Superfície
20.
J Proteome Res ; 20(1): 393-408, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33331781

RESUMO

Major histocompatibility complex (MHC)-presented peptides (pMHC) give insight into T cell immune responses, a critical step toward developing a new generation of targeted immunotherapies. Recent instrumentation advances have propelled mass spectrometry to being arguably the most robust technology for discovering and quantifying naturally presented pMHC from cells and tissues. However, sample preparation has remained a major limitation due to time-consuming and labor-intensive workflows. We developed a high-throughput and automated platform with enhanced speed, sensitivity, and reproducibility relative to prior studies. This pipeline is capable of processing up to 96 samples in 6 h or less yielding high-quality pMHC mixtures ready for mass spectrometry. Here, we describe our efforts to optimize purification and mass spectrometer parameters, ultimately allowing us to identify as many as almost 5000 pMHC I and 7400 pMHC II from as little as 2.5 × 107 Raji cells each. We believe that this platform will facilitate and accelerate immunopeptidome profiling and benefit clinical research for immunotherapies.


Assuntos
Imunoterapia , Peptídeos , Ligantes , Espectrometria de Massas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...