Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Sci Rep ; 12(1): 9164, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655069

RESUMO

Aging is associated a decrease in thirst sensation, which makes old people more susceptible to dehydration. Dehydration produces energy metabolism alterations. Our objective was to determinate the effect of water deprivation (WD) in the lipid metabolism of old male and female rats. Here we show that in the state of WD, aging and sex alters retroperitoneal white adipose tissue (R-WAT) weight of rats, WD old female rats had more lipolysis products than old male rats, a sexual dimorphism in the hormonal response related with metabolism of the adipose tissue of old rats during WD, the expression of P-para mRNA in R-WAT did not present any alteration in animals submitted to WD, the expression of Aqp7 mRNA in R-WAT is altered by WD, age, and sex. Also, WD stimulated an increase in the plasma concentration of oxytocin and the expression of mRNA of the oxytocin receptors in R-WAT.


Assuntos
Desidratação , Metabolismo dos Lipídeos , Tecido Adiposo Branco/metabolismo , Animais , Desidratação/metabolismo , Feminino , Humanos , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
2.
Braz J Med Biol Res ; 55: e11635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35137852

RESUMO

Hypovolemia induced by hemorrhage is a common clinical complication, which stimulates vasopressin (AVP) secretion by the neurohypophysis in order to retain body water and maintain blood pressure. To evaluate the role of brain L-glutamate and angiotensin II on AVP secretion induced by hypovolemia we induced hemorrhage (∼25% of blood volume) after intracerebroventricular (icv) administration of AP5, NBQX, or losartan, which are NMDA, AMPA, and AT1 receptor antagonists, respectively. Hemorrhage significantly increased plasma AVP levels in all groups. The icv injection of AP5 did not change AVP secretion in response to hemorrhage. Conversely, icv administration of both NBQX and losartan significantly decreased plasma AVP levels after hemorrhage. Therefore, the blockade of AMPA and AT1 receptors impaired AVP secretion in response to hemorrhage, suggesting that L-glutamate and angiotensin II acted in these receptors to increase AVP secretion in response to hemorrhage-induced hypovolemia.


Assuntos
Arginina Vasopressina , Hemorragia , Receptor Tipo 1 de Angiotensina , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Angiotensina II , Animais , Arginina Vasopressina/metabolismo , Pressão Sanguínea , Injeções Intraventriculares , Masculino , Ratos Wistar , Receptor Tipo 1 de Angiotensina/metabolismo
3.
Braz. j. med. biol. res ; 55: e11635, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1360232

RESUMO

Hypovolemia induced by hemorrhage is a common clinical complication, which stimulates vasopressin (AVP) secretion by the neurohypophysis in order to retain body water and maintain blood pressure. To evaluate the role of brain L-glutamate and angiotensin II on AVP secretion induced by hypovolemia we induced hemorrhage (∼25% of blood volume) after intracerebroventricular (icv) administration of AP5, NBQX, or losartan, which are NMDA, AMPA, and AT1 receptor antagonists, respectively. Hemorrhage significantly increased plasma AVP levels in all groups. The icv injection of AP5 did not change AVP secretion in response to hemorrhage. Conversely, icv administration of both NBQX and losartan significantly decreased plasma AVP levels after hemorrhage. Therefore, the blockade of AMPA and AT1 receptors impaired AVP secretion in response to hemorrhage, suggesting that L-glutamate and angiotensin II acted in these receptors to increase AVP secretion in response to hemorrhage-induced hypovolemia.

4.
Neuroscience ; 442: 286-295, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32599125

RESUMO

During prolonged dehydration, body fluid homeostasis is challenged by extracellular fluid (ECF) hyperosmolality, which induce important functional changes in the hypothalamus, in parallel with other effector responses, such as the activation of the local renin-angiotensin system (RAS). Therefore, in the present study we investigated the role of sodium-driven ECF hyperosmolality on glial fibrillary acid protein (GFAP) immunoreactivity and protein expression, membrane capacitance, mRNA expression of RAS components and glutamate balance in cultured hypothalamic astrocytes. Our data show that hypothalamic astrocytes respond to increased hyperosmolality with a similar decrease in GFAP expression and membrane capacitance, indicative of reduced cellular area. Hyperosmolality also downregulates the transcript levels of angiotensinogen and both angiotensin-converting enzymes, whereas upregulates type 1a angiotensin II receptor mRNA. Incubation with hypertonic solution also decreases the immunoreactivity to the membrane glutamate/aspartate transporter (GLAST) as well as tritiated-aspartate uptake by astrocytes. This latter effect is completely restored to basal levels when astrocytes previously exposed to hypertonicity are incubated under isotonic conditions. Together with a direct effect on two important local signaling systems (glutamate and RAS), these synaptic rearrangements driven by astrocytes may accomplish for a coordinated increase in the excitatory drive onto the hypothalamic neurosecretory system, ultimately culminating with increased AVP release in response to hyperosmolality.


Assuntos
Astrócitos , Ácido Glutâmico , Astrócitos/metabolismo , Células Cultivadas , Transportador 2 de Aminoácido Excitatório/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipotálamo/metabolismo , RNA Mensageiro
5.
J Endocrinol ; 240(2): 345-360, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508412

RESUMO

17ß-Estradiol (E2) has been shown to modulate the renin-angiotensin system in hydromineral and blood pressure homeostasis mainly by attenuating angiotensin II (ANGII) actions. However, the cellular mechanisms of the interaction between E2 and angiotensin II (ANGII) and its physiological role are largely unknown. The present experiments were performed to better understand the interaction between ANGII and E2 in body fluid control in female ovariectomized (OVX) rats. The present results are the first to demonstrate that PKC/p38 MAPK signaling is involved in ANGII-induced water and sodium intake and oxytocin (OT) secretion in OVX rats. In addition, previous data from our group revealed that the ANGII-induced vasopressin (AVP) secretion requires ERK1/2 signaling. Therefore, taken together, the present observations support a novel concept that distinct intracellular ANGII signaling gives rise to distinct neurohypophyseal hormone release. Furthermore, the results show that E2 attenuates p38 MAPK phosphorylation in response to ANGII but not PKC activity in the hypothalamus and the lamina terminalis, suggesting that E2 modulates ANGII effects through the attenuation of the MAPK pathway. In conclusion, this work contributes to the further understanding of the interaction between E2 and ANGII signaling in hydromineral homeostasis, as well as it contributes to further elucidate the physiological relevance of PKC/p38 MAPK signaling on the fluid intake and neurohypophyseal release induced by ANGII.


Assuntos
Angiotensina II/farmacologia , Encéfalo/efeitos dos fármacos , Estradiol/farmacologia , Proteína Quinase C-alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Benzofenantridinas/farmacologia , Encéfalo/enzimologia , Ingestão de Líquidos/efeitos dos fármacos , Interações Medicamentosas , Feminino , Homeostase/efeitos dos fármacos , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ovariectomia , Ocitocina/metabolismo , Proteína Quinase C-alfa/antagonistas & inibidores , Piridinas/farmacologia , Ratos Wistar , Vasopressinas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
6.
Sci Rep ; 7(1): 14094, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074877

RESUMO

Exposure to loud sounds has become increasingly common. The most common consequences of loud sound exposure are deafness and tinnitus, but emotional and cognitive problems are also associated with loud sound exposure. Loud sounds can activate the hipothalamic-pituitary-adrenal axis resulting in the secretion of corticosterone, which affects hippocampal synaptic plasticity. Previously we have shown that long-term exposure to short episodes of high intensity sound inhibited hippocampal long-term potentiation (LTP) without affecting spatial learning and memory. Here we aimed to study the impact of short term loud sound exposure on hippocampal synaptic plasticity and function. We found that a single minute of 110 dB sound inhibits hippocampal Schaffer-CA1 LTP for 24 hours. This effect did not occur with an 80-dB sound exposure, was not correlated with corticosterone secretion and was also observed in the perforant-dentate gyrus synapse. We found that despite the deficit in the LTP these animals presented normal spatial learning and memory and fear conditioning. We conclude that a single episode of high-intensity sound impairs hippocampal LTP, without impairing memory and learning. Our results show that the hippocampus is very responsive to loud sounds which can have a potential, but not yet identified, impact on its function.


Assuntos
Percepção Auditiva/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Corticosterona/metabolismo , Potenciais Pós-Sinápticos Excitadores , Medo/fisiologia , Masculino , Ratos Wistar , Aprendizagem Espacial/fisiologia , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Sinapses/fisiologia , Técnicas de Cultura de Tecidos
7.
J Neuroendocrinol ; 29(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28836382

RESUMO

Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen-activated protein kinase (MAPK) pathway, which has previously been linked to Ang II-induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low-sodium diet consumption. An increase in extracellular signal-regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low-sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low-sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low-sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low-sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low-sodium diet groups. These data indicate that low-sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low-sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low-sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low-sodium diet consumption.


Assuntos
Apetite , Encéfalo/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Sódio na Dieta , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Animais , Dieta Hipossódica , Masculino , Ratos Wistar , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais
8.
Neuroscience ; 322: 525-38, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26951941

RESUMO

The angiotensin II (ANGII) receptor AT1 plays an important role in the control of hydromineral balance, mediating the dipsogenic and natriorexigenic effects and neuroendocrine responses of ANGII. While estradiol (E2) is known to modulate several actions of ANGII in the brain, the molecular and cellular mechanisms of the interaction between E2 and ANGII and its physiological role in the control of body fluids remain unclear. We investigated the influence of E2 (40 µg/kg) pretreatment and extracellular-signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) cell signaling on the dipsogenic and natriorexigenic effects, as well as the neuroendocrine responses to angiotensinergic central stimulation in ovariectomized rats (OVX). We showed that the inhibitory effect of E2 on ANGII-induced water and sodium intake requires the ERK1/2 and JNK signaling pathways. On the other hand, E2 pretreatment prevents the ANGII-induced phosphorylation of ERK and JNK in the lamina terminalis. E2 therapy decreased oxytocin (OT) and vasopressin (AVP) secretion and decreased ERK1/2 phosphorylation in the supraoptic and paraventricular nuclei (SON and PVN, respectively). We found that the AVP secretion induced by ANGII required ERK1/2 signaling, but OT secretion did not involve ERK1/2 signaling. Taken together, these results demonstrate that E2 modulates ANGII-induced water and sodium intake and AVP secretion by affecting the ERK1/2 and JNK pathways in the lamina terminalis and ERK1/2 signaling in the hypothalamic nuclei (PVN and SON) in OVX rats.


Assuntos
Angiotensina II/metabolismo , Ingestão de Líquidos/fisiologia , Estradiol/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Sódio na Dieta , Angiotensina II/administração & dosagem , Animais , Fármacos do Sistema Nervoso Central/administração & dosagem , Fármacos do Sistema Nervoso Central/metabolismo , Ingestão de Líquidos/efeitos dos fármacos , Estradiol/administração & dosagem , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ovariectomia , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Distribuição Aleatória , Ratos Wistar , Núcleo Supraóptico/efeitos dos fármacos , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo
9.
Horm Behav ; 78: 43-51, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26497248

RESUMO

Hydroelectrolytic imbalances, such as saline load (SL), trigger behavioral and neuroendocrine responses, such as thirst, hypophagia, vasopressin (AVP) and oxytocin (OT) release and hypothalamus­pituitary­adrenal (HPA) axis activation. To investigate the participation of the type-1 cannabinoid receptor (CB1R) in these homeostatic mechanisms,male adult Wistar rats were subjected to SL (0.3MNaCl) for four days. SL induced not only increases in the water intake and plasma levels of AVP, OT and corticosterone, as previously described, but also increases in CB1R expression in the lamina terminalis, which integrates sensory afferents, aswell as in the hypothalamus, the main integrative and effector area controlling hydroelectrolytic homeostasis. A more detailed analysis revealed that CB1R-positive terminals are in close apposition with not only axons but also dendrites and secretory granules of magnocellular neurons, particularly vasopressinergic cells. In satiated and euhydrated animals, the intracerebroventricular administration of the CB1R selective agonist ACEA (0.1 µg/5 µL) promoted hyperphagia, but this treatment did not reverse the hyperosmolality-induced hypophagia in the SL group. Furthermore, ACEA pretreatment potentiated water intake in the SL animals during rehydration as well as enhanced the corticosterone release and prevented the increase in AVP and OT secretion induced by SL. The same parameters were not changed by ACEA in the animals whose daily food intake was matched to that of the SL group (Pair-Fed). These data indicate that CB1Rs modulate the hydroelectrolytic balance independently of the food intake during sustained hyperosmolality and hypovolemia.


Assuntos
Metabolismo Energético/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Cloreto de Sódio na Dieta/farmacologia , Equilíbrio Hidroeletrolítico , Animais , Ingestão de Alimentos/efeitos dos fármacos , Endocanabinoides/farmacologia , Metabolismo Energético/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipovolemia/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/agonistas , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
10.
Horm Behav ; 67: 12-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25436932

RESUMO

During dehydration, responses of endocrine and autonomic control systems are triggered by central and peripheral osmoreceptors and peripheral baroreceptors to stimulate thirst and sodium appetite. Specifically, it is already clear that endocrine system acts by secreting vasopressin (AVP), oxytocin (OT) and angiotensin II (ANG II), and that gaseous molecules, such as nitric oxide (NO) and carbon monoxide (CO), play an important role in modulating the neurohypophyseal secretion as well as ANG II production and thirst. More recently, another gas-hydrogen sulfide (H2S)-has been studied as a neuronal modulator, which is involved in hypothalamic control of blood pressure, heart frequency and temperature. In this study, we aimed to investigate whether H2S and its interaction with NO system could participate in the modulatory responses of thirst and hormonal secretion induced by fluid deprivation. For this purpose, Wistar male rats were deprived of water for 12 and 24h, and the activity of sulfide-generating enzymes was measured. Surprisingly, 24-h water deprivation increased the activity of sulfide-generating enzymes in the medial basal hypothalamus (MBH). Furthermore, the icv injection of sodium sulfide (Na2S, 260nmol), a H2S donor, reduced water intake, increased AVP, OT and CORT plasma concentrations and decreased MBH nitrate/nitrite (NOX) content of 24-h water-deprived animals compared to controls. We thus suggest that H2S system has an important role in the modulation of hormonal and behavioral responses induced by 24-h fluid deprivation.


Assuntos
Ingestão de Líquidos/efeitos dos fármacos , Gasotransmissores/farmacologia , Sulfeto de Hidrogênio/farmacologia , Neurotransmissores/farmacologia , Ocitocina/sangue , Vasopressinas/sangue , Privação de Água/fisiologia , Animais , Masculino , Ocitocina/efeitos dos fármacos , Ratos , Ratos Wistar , Vasopressinas/efeitos dos fármacos
11.
J Neuroendocrinol ; 26(11): 796-804, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25113140

RESUMO

In addition to its action in the control of the hypothalamic-pituitary-adrenal axis, corticotrophin-releasing factor (CRF) has been described as an anorexigenic neuropeptide, modulating food intake and energy expenditure. CRF synthesis is influenced by leptin, which would act to increase CRF neurone activation in the paraventricular nucleus (PVN). Gonadal hormones also participate in the regulation of energy homeostasis. The reduction of food intake and body weight gain in ovariectomised (OVX) rats treated with oestradiol is associated with an increase in CRF mRNA expression in the PVN. The present study aimed to investigate the role of CRF as a mediator of leptin responsiveness in the presence of oestradiol. Wistar female rats were bilaterally OVX and divided into three groups: OVX, OVX+E (i.e. treated with oestradiol) and OVX+PF (i.e. OVX pairfed with OVX+E). The rats received daily s.c. injections of either oestradiol cypionate or vehicle for 8 days. To evaluate the role of CRF on the effects of leptin, we performed an i.c.v. leptin injection (10 µg/5 µl) with or without previous i.c.v. treatment with an CRF-R2 antagonist. We observed that oestradiol replacement in OVX rats reduced body weight gain and food intake. The effects of exogenous leptin administration with respect to decreasing food intake and body weight, and increasing uncoupling protein-1 expression in the brown adipose tissue and neuronal activation in the arcuate nucleus, were reversed by previous administration of a CRF-R2 antagonist only in oestradiol-treated OVX rats. These effects appear to be mediated by CRF-2 receptor because the antagonist of this receptor reversed the action of oestradiol on the effects of leptin.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Estradiol/análogos & derivados , Homeostase/efeitos dos fármacos , Leptina/farmacologia , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/fisiologia , Estradiol/farmacologia , Feminino , Homeostase/fisiologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Fragmentos de Peptídeos/farmacologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores
12.
J Neuroendocrinol ; 26(6): 370-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24750469

RESUMO

Endocannabinoids (ECBs) are ubiquitous lipophilic agents, and this characteristic is consistent with the wide range of homeostatic functions attributed to the ECB system. There is an increasing number of studies showing that the ECB system affects neurotransmission within the hypothalamic neurohypophyseal system. We provide an overview of the primary roles of ECBs in the modulation of neuroendocrine function and, specifically, in the control of hydromineral homeostasis. Accordingly, the general aspects of ECB-mediated signalling, as well as the specific contributions of the central component of the ECB system to the integration of behavioural and endocrine responses that control body fluid homeostasis, are discussed.


Assuntos
Endocanabinoides/fisiologia , Minerais/metabolismo , Sistemas Neurossecretores/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Humanos , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptores de Canabinoides/fisiologia
13.
Braz J Med Biol Res ; 46(4): 327-38, 2013 04.
Artigo em Inglês | MEDLINE | ID: mdl-23579631

RESUMO

Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators) into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin) and amino acids (glutamate, GABA), but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide) and lipid-derived (endocannabinoids) mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen), which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.


Assuntos
Líquidos Corporais/fisiologia , Homeostase/fisiologia , Vias Neurais/fisiologia , Neurossecreção/fisiologia , Neurotransmissores/fisiologia , Transdução de Sinais/fisiologia , Animais , Mapeamento Encefálico , Humanos , Concentração Osmolar
14.
Braz. j. med. biol. res ; 46(4): 327-338, 05/abr. 2013.
Artigo em Inglês | LILACS | ID: lil-671387

RESUMO

Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators) into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin) and amino acids (glutamate, GABA), but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide) and lipid-derived (endocannabinoids) mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen), which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.


Assuntos
Animais , Humanos , Líquidos Corporais/fisiologia , Homeostase/fisiologia , Vias Neurais/fisiologia , Neurossecreção/fisiologia , Neurotransmissores/fisiologia , Transdução de Sinais/fisiologia , Mapeamento Encefálico , Concentração Osmolar
15.
J Neuroendocrinol ; 25(5): 466-77, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23331859

RESUMO

The present study investigated the involvement of the oxytocinergic neurones that project into the central amygdala (CeA) in the control of electrolyte excretion and hormone secretion in unanaesthetised rats subjected to acute hypertonic blood volume expansion (BVE; 0.3 M NaCl, 2 ml/100 g of body weight over 1 min). Oxytocin and vasopressin mRNA expression in the paraventricular (Pa) and supraoptic nucleus (SON) of the hypothalamus were also determined using the real time-polymerase chain reaction and in situ hybridisation. Male Wistar rats with unilaterally implanted stainless steel cannulas in the CeA were used. Oxytocin (1 µg/0.2 µl), vasotocin, an oxytocin antagonist (1 µg/0.2 µl) or vehicle was injected into the CeA 20 min before the BVE. In rats treated with vehicle in the CeA, hypertonic BVE increased urinary volume, sodium excretion, plasma oxytocin (OT), vasopressin (AVP) and atrial natriuretic peptide (ANP) levels and also increased the expression of OT and AVP mRNA in the Pa and SON. In rats pre-treated with OT in the CeA, previously to the hypertonic BVE, there were further significant increases in plasma AVP, OT and ANP levels, urinary sodium and urine output, as well as in gene expression (AVP and OT mRNA) in the Pa and SON compared to BVE alone. Vasotocin reduced sodium, urine output and ANP levels, although no changes were observed in plasma AVP and OT levels or in the expression of the AVP and OT genes in both hypothalamic nuclei. The results of the present study suggest that oxytocin in the CeA exerts a facilitatory role in the maintenance of hydroelectrolyte balance in response to changes in extracellular volume and osmolality.


Assuntos
Tonsila do Cerebelo/fisiologia , Ocitocina/fisiologia , Equilíbrio Hidroeletrolítico , Animais , Arginina Vasopressina/genética , Arginina Vasopressina/metabolismo , Masculino , Ocitocina/genética , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
16.
Horm Behav ; 64(5): 847-55, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24396886

RESUMO

Estradiol (E2) plays an important role in controlling the homeostasis of body fluids. Several studies have reported the involvement of the hypothalamic pituitary adrenal axis (HPA) in the homeostatic control of hydromineral balance and the influence of estrogens on the modulation of this system. Nevertheless, until now, the physiological relevance of HPA axis activity on the hydromineral balance in females has not yet been fully elucidated. Therefore, the objective of the present study was to evaluate the effects of E2 (20 µg/animal) pretreatment on neuroendocrine and hydroelectrolyte changes induced by adrenalectomy (ADX) with or without glucocorticoid hormone replacement (corticosterone, CORT; 10 mg/kg) in ovariectomized rats (OVX). The results show that sodium appetite, natriuresis and the elevated plasma angiotensin II (ANG II) concentration induced by ADX were attenuated by E2 pretreatment. Additionally, a reduction of AT1 mRNA expression in the subfornical organ (SFO) and an increase in plasma atrial natriuretic peptide (ANP) concentrations by E2 pretreatment were observed. E2 pretreatment reversed the reduction in water intake induced by ADX in ADX CORT-replaced rats. Moreover, E2 pretreatment attenuated corticotropin releasing factor (CRF) mRNA expression in the paraventricular nucleus (PVN) induced by ADX. In contrast, E2 pretreatment increased CRF mRNA expression in the PVN in ADX CORT-replaced rats. Taken together, these results suggest that E2 has an important role in the modulation of behavioral and neuroendocrine responses involved in the maintenance of body fluid homeostasis in ADX rats with or without glucocorticoid replacement therapy.


Assuntos
Insuficiência Adrenal/metabolismo , Corticosterona/fisiologia , Estradiol/fisiologia , Minerais/metabolismo , Equilíbrio Hidroeletrolítico , Animais , Corticosterona/farmacologia , Ingestão de Líquidos/efeitos dos fármacos , Interações Medicamentosas , Estradiol/farmacologia , Feminino , Natriurese/efeitos dos fármacos , Ovariectomia , Ratos , Ratos Wistar , Sódio/metabolismo , Sede/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
17.
J Neuroendocrinol ; 25(3): 281-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23002791

RESUMO

The present study aimed to investigate the role of angiotensin II (Ang II) on sodium appetite in rats subjected to a normal or a low-sodium diet (1% or > 0.1% NaCl) for 4 days. During sodium restriction, a reduction in water intake, urinary volume and sodium excretion was observed. After a low-sodium diet, we observed decreased plasma protein concentrations and haematocrit associated with a slight reduction in arterial pressure, without any significant changes in heart rate, natraemia, corticotrophin-releasing hormone mRNA expression in the paraventricular nucleus and corticosterone levels. After providing hypertonic saline, there was an increase in saline intake followed by a small increase in water intake, resulting in an enhanced saline intake ratio and the recovery of arterial pressure. Sodium deprivation increased plasma but not brain Ang I and II concentrations. A low-sodium diet increased kidney renin and liver angiotensinogen mRNA levels but not lung angiotensin-converting enzyme mRNA expression. Moreover, Ang II type 1a receptor mRNA expression was increased in the subfornical organ and the dorsal raphe nucleus and decreased in the medial preoptic nuclei, without changes in the paraventricular nucleus and the nucleus of solitary tract after a low-sodium diet. Blockade of AT(1) receptors or brain Ang II synthesis led to a reduction in sodium intake after a low-sodium diet. Intracerebroventricular injection of Ang II led to a similar increase in sodium and water intake in the control and low-sodium diet groups. In conclusion, the results of the present study suggest that Ang II is involved in the increased sodium appetite after a low-sodium diet.


Assuntos
Angiotensina II/fisiologia , Dieta Hipossódica , Sódio/administração & dosagem , Animais , Masculino , Radioimunoensaio , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
18.
Braz. j. med. biol. res ; 45(8): 784-791, Aug. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-643651

RESUMO

We evaluated the expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), ionized calcium binding adaptor protein-1 (Iba-1), and ferritin in rats after single or repeated lipopolysaccharide (LPS) treatment, which is known to induce endotoxin tolerance and glial activation. Male Wistar rats (200-250 g) received ip injections of LPS (100 µg/kg) or saline for 6 days: 6 saline (N = 5), 5 saline + 1 LPS (N = 6) and 6 LPS (N = 6). After the sixth injection, the rats were perfused and the brains were collected for immunohistochemistry. After a single LPS dose, the number of GFAP-positive cells increased in the hypothalamic arcuate nucleus (ARC; 1 LPS: 35.6 ± 1.4 vs control: 23.1 ± 2.5) and hippocampus (1 LPS: 165.0 ± 3.0 vs control: 137.5 ± 2.5), and interestingly, 6 LPS injections further increased GFAP expression in these regions (ARC = 52.5 ± 4.3; hippocampus = 182.2 ± 4.1). We found a higher GS expression only in the hippocampus of the 6 LPS injections group (56.6 ± 0.8 vs 46.7 ± 1.9). Ferritin-positive cells increased similarly in the hippocampus of rats treated with a single (49.2 ± 1.7 vs 28.1 ± 1.9) or repeated (47.6 ± 1.1 vs 28.1 ± 1.9) LPS dose. Single LPS enhanced Iba-1 in the paraventricular nucleus (PVN: 92.8 ± 4.1 vs 65.2 ± 2.2) and hippocampus (99.4 ± 4.4 vs 73.8 ± 2.1), but had no effect in the retrochiasmatic nucleus (RCA) and ARC. Interestingly, 6 LPS increased the Iba-1 expression in these hypothalamic and hippocampal regions (RCA: 57.8 ± 4.6 vs 36.6 ± 2.2; ARC: 62.4 ± 6.0 vs 37.0 ± 2.2; PVN: 100.7 ± 4.4 vs 65.2 ± 2.2; hippocampus: 123.0 ± 3.8 vs 73.8 ± 2.1). The results suggest that repeated LPS treatment stimulates the expression of glial activation markers, protecting neuronal activity during prolonged inflammatory challenges.


Assuntos
Animais , Masculino , Ratos , Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Ferritinas/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Glutamato-Amônia Ligase/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Neuroglia/metabolismo , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Ferritinas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Hipocampo/química , Hipocampo/citologia , Hipotálamo/química , Hipotálamo/citologia , Imuno-Histoquímica , Lipopolissacarídeos , Neuroglia/efeitos dos fármacos , Ratos Wistar
19.
Braz J Med Biol Res ; 45(8): 784-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22570086

RESUMO

We evaluated the expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), ionized calcium binding adaptor protein-1 (Iba-1), and ferritin in rats after single or repeated lipopolysaccharide (LPS) treatment, which is known to induce endotoxin tolerance and glial activation. Male Wistar rats (200-250 g) received ip injections of LPS (100 µg/kg) or saline for 6 days: 6 saline (N = 5), 5 saline + 1 LPS (N = 6) and 6 LPS (N = 6). After the sixth injection, the rats were perfused and the brains were collected for immunohistochemistry. After a single LPS dose, the number of GFAP-positive cells increased in the hypothalamic arcuate nucleus (ARC; 1 LPS: 35.6 ± 1.4 vs control: 23.1 ± 2.5) and hippocampus (1 LPS: 165.0 ± 3.0 vs control: 137.5 ± 2.5), and interestingly, 6 LPS injections further increased GFAP expression in these regions (ARC = 52.5 ± 4.3; hippocampus = 182.2 ± 4.1). We found a higher GS expression only in the hippocampus of the 6 LPS injections group (56.6 ± 0.8 vs 46.7 ± 1.9). Ferritin-positive cells increased similarly in the hippocampus of rats treated with a single (49.2 ± 1.7 vs 28.1 ± 1.9) or repeated (47.6 ± 1.1 vs 28.1 ± 1.9) LPS dose. Single LPS enhanced Iba-1 in the paraventricular nucleus (PVN: 92.8 ± 4.1 vs 65.2 ± 2.2) and hippocampus (99.4 ± 4.4 vs 73.8 ± 2.1), but had no effect in the retrochiasmatic nucleus (RCA) and ARC. Interestingly, 6 LPS increased the Iba-1 expression in these hypothalamic and hippocampal regions (RCA: 57.8 ± 4.6 vs 36.6 ± 2.2; ARC: 62.4 ± 6.0 vs 37.0 ± 2.2; PVN: 100.7 ± 4.4 vs 65.2 ± 2.2; hippocampus: 123.0 ± 3.8 vs 73.8 ± 2.1). The results suggest that repeated LPS treatment stimulates the expression of glial activation markers, protecting neuronal activity during prolonged inflammatory challenges.


Assuntos
Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Ferritinas/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Glutamato-Amônia Ligase/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Neuroglia/metabolismo , Animais , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Ferritinas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Hipocampo/química , Hipocampo/citologia , Hipotálamo/química , Hipotálamo/citologia , Imuno-Histoquímica , Lipopolissacarídeos , Masculino , Neuroglia/efeitos dos fármacos , Ratos , Ratos Wistar
20.
Clin Exp Pharmacol Physiol ; 39(2): 151-4, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22211674

RESUMO

The present study provides the first in vivo evidence that the cannabinoid CB(1) receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB(1) receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB(1) receptor. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB(1) receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB(1) receptor in the control of peripheral factors that modulate cardiovascular function. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB(1) receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamic-pituitary-adrenal axis. Collectively, the results of the present study indicate that the CB(1) receptor modulates neurohypophyseal hormone secretion and systemic factors, such as corticosterone and ANP, thus participating in homeostatic responses to altered extracellular volume and plasma tonicity.


Assuntos
Fator Natriurético Atrial/metabolismo , Líquido Extracelular/fisiologia , Glucocorticoides/fisiologia , Ocitocina/metabolismo , Receptor CB1 de Canabinoide/fisiologia , Vasopressinas/metabolismo , Animais , Fator Natriurético Atrial/sangue , Volume Sanguíneo , Líquido Extracelular/efeitos dos fármacos , Masculino , Concentração Osmolar , Osmose , Ocitocina/sangue , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto , Vasopressinas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...