Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8009): 811-817, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38632397

RESUMO

Hybridization allows adaptations to be shared among lineages and may trigger the evolution of new species1,2. However, convincing examples of homoploid hybrid speciation remain rare because it is challenging to demonstrate that hybridization was crucial in generating reproductive isolation3. Here we combine population genomic analysis with quantitative trait locus mapping of species-specific traits to examine a case of hybrid speciation in Heliconius butterflies. We show that Heliconius elevatus is a hybrid species that is sympatric with both parents and has persisted as an independently evolving lineage for at least 180,000 years. This is despite pervasive and ongoing gene flow with one parent, Heliconius pardalinus, which homogenizes 99% of their genomes. The remaining 1% introgressed from the other parent, Heliconius melpomene, and is scattered widely across the H. elevatus genome in islands of divergence from H. pardalinus. These islands contain multiple traits that are under disruptive selection, including colour pattern, wing shape, host plant preference, sex pheromones and mate choice. Collectively, these traits place H. elevatus on its own adaptive peak and permit coexistence with both parents. Our results show that speciation was driven by introgression of ecological traits, and that speciation with gene flow is possible with a multilocus genetic architecture.


Assuntos
Borboletas , Introgressão Genética , Especiação Genética , Hibridização Genética , Locos de Características Quantitativas , Animais , Feminino , Masculino , Borboletas/anatomia & histologia , Borboletas/classificação , Borboletas/genética , Fluxo Gênico , Introgressão Genética/genética , Genoma de Inseto/genética , Preferência de Acasalamento Animal , Fenótipo , Pigmentação/genética , Locos de Características Quantitativas/genética , Isolamento Reprodutivo , Seleção Genética/genética , Especificidade da Espécie , Simpatria/genética , Asas de Animais/anatomia & histologia , Asas de Animais/metabolismo
2.
J Evol Biol ; 36(7): 975-991, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37363877

RESUMO

Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such "defence portfolios" that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.


Assuntos
Ecologia , Comportamento Predatório , Animais , Fenótipo
3.
Am Nat ; 201(5): E110-E126, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130234

RESUMO

AbstractMutualistic interactions between defended species represent a striking case of evolutionary convergence in sympatry, driven by the increased protection against predators brought by mimicry in warning traits. However, such convergence is often limited: sympatric defended species frequently display different or imperfectly similar warning traits. The phylogenetic distance between sympatric species may indeed prevent evolution toward the exact same signal. Moreover, warning traits are also involved in mate recognition, so trait convergence might result in heterospecific courtship and mating. Here, we develop a mathematical model to investigate the strength and direction of the evolution of warning traits in defended species with different ancestral traits. Specifically, we determine the effect of phenotypic distances between ancestral trait states of sympatric defended species and of the costs of heterospecific sexual interactions on imperfect mimicry and trait divergence. Our analytical results confirm that reproductive interference and historical constraints limit the convergence of warning traits, leading to either complete divergence or imperfect mimicry. Our model reveals that imperfect mimicry evolves only when ancestral trait values differ between species because of historical constraints and highlights the importance of female and predator discrimination in the evolution of such imperfect mimicry. Our study thus provides new predictions on how reproductive interference interacts with historical constraints and may promote the emergence of novel warning traits, enhancing mimetic diversity.


Assuntos
Reprodução , Simpatria , Feminino , Humanos , Filogenia , Corte , Fenótipo , Evolução Biológica
4.
Biol Rev Camb Philos Soc ; 98(4): 1310-1328, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36994698

RESUMO

Many bees and stinging wasps, or aculeates, exhibit striking colour patterns or conspicuous coloration, such as black and yellow stripes. Such coloration is often interpreted as an aposematic signal advertising aculeate defences: the venomous sting. Aposematism can lead to Müllerian mimicry, the convergence of signals among different species unpalatable to predators. Müllerian mimicry has been extensively studied, notably on Neotropical butterflies and poison frogs. However, although a very high number of aculeate species harbour putative aposematic signals, aculeates are under-represented in mimicry studies. Here, we review the literature on mimicry rings that include bee and stinging wasp species. We report over a hundred described mimicry rings, involving a thousand species that belong to 19 aculeate families. These mimicry rings are found all throughout the world. Most importantly, we identify remaining knowledge gaps and unanswered questions related to the study of Müllerian mimicry in aculeates. Some of these questions are specific to aculeate models, such as the impact of sociality and of sexual dimorphism in defence levels on mimicry dynamics. Our review shows that aculeates may be one of the most diverse groups of organisms engaging in Müllerian mimicry and that the diversity of aculeate Müllerian mimetic interactions is currently under-explored. Thus, aculeates represent a new and major model system to study the evolution of Müllerian mimicry. Finally, aculeates are important pollinators and the global decline of pollinating insects raises considerable concern. In this context, a better understanding of the impact of Müllerian mimicry on aculeate communities may help design strategies for pollinator conservation, thereby providing future directions for evolutionary research.


Assuntos
Mimetismo Biológico , Borboletas , Vespas , Abelhas , Animais , Modelos Biológicos , Comportamento Social , Evolução Biológica
5.
Ecol Lett ; 26(6): 843-857, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929564

RESUMO

Understanding the mechanisms underlying species distributions and coexistence is both a priority and a challenge for biodiversity hotspots such as the Neotropics. Here, we highlight that Müllerian mimicry, where defended prey species display similar warning signals, is key to the maintenance of biodiversity in the c. 400 species of the Neotropical butterfly tribe Ithomiini (Nymphalidae: Danainae). We show that mimicry drives large-scale spatial association among phenotypically similar species, providing new empirical evidence for the validity of Müller's model at a macroecological scale. Additionally, we show that mimetic interactions drive the evolutionary convergence of species climatic niche, thereby strengthening the co-occurrence of co-mimetic species. This study provides new insights into the importance of mutualistic interactions in shaping both niche evolution and species assemblages at large spatial scales. Critically, in the context of climate change, our results highlight the vulnerability to extinction cascades of such adaptively assembled communities tied by positive interactions.


Assuntos
Mimetismo Biológico , Borboletas , Animais , Biodiversidade , Simbiose
6.
Mol Ecol Resour ; 23(4): 872-885, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36533297

RESUMO

The ithomiine butterflies (Nymphalidae: Danainae) represent the largest known radiation of Müllerian mimetic butterflies. They dominate by number the mimetic butterfly communities, which include species such as the iconic neotropical Heliconius genus. Recent studies on the ecology and genetics of speciation in Ithomiini have suggested that sexual pheromones, colour pattern and perhaps hostplant could drive reproductive isolation. However, no reference genome was available for Ithomiini, which has hindered further exploration on the genetic architecture of these candidate traits, and more generally on the genomic patterns of divergence. Here, we generated high-quality, chromosome-scale genome assemblies for two Melinaea species, M. marsaeus and M. menophilus, and a draft genome of the species Ithomia salapia. We obtained genomes with a size ranging from 396 to 503 Mb across the three species and scaffold N50 of 40.5 and 23.2 Mb for the two chromosome-scale assemblies. Using collinearity analyses we identified massive rearrangements between the two closely related Melinaea species. An annotation of transposable elements and gene content was performed, as well as a specialist annotation to target chemosensory genes, which is crucial for host plant detection and mate recognition in mimetic species. A comparative genomic approach revealed independent gene expansions in ithomiines and particularly in gustatory receptor genes. These first three genomes of ithomiine mimetic butterflies constitute a valuable addition and a welcome comparison to existing biological models such as Heliconius, and will enable further understanding of the mechanisms of adaptation in butterflies.


Assuntos
Borboletas , Animais , Borboletas/genética , Adaptação Fisiológica , Fenótipo , Genômica , Cromossomos/genética
7.
Cytogenet Genome Res ; 162(5): 262-272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36689925

RESUMO

Mitotic chromosomes of butterflies, which look like dots or short filaments in most published data, are generally considered to lack localised centromeres and thus to be holokinetic. This particularity, observed in a number of other invertebrates, is associated with meiotic particularities known as "inverted meiosis," in which the first division is equational, i.e., centromere splitting-up and segregation of sister chromatids instead of homologous chromosomes. However, the accurate analysis of butterfly chromosomes is difficult because (1) their size is very small, equivalent to 2 bands of a mammalian metaphase chromosome, and (2) they lack satellite DNA/heterochromatin in putative centromere regions and therefore marked primary constrictions. Our improved conditions for basic chromosome preparations, here applied to 6 butterfly species belonging to families Nymphalidae and Pieridae challenges the holocentricity of their chromosomes: in spite of the absence of primary constrictions, sister chromatids are recurrently held together at definite positions during mitotic metaphase, which makes possible to establish karyotypes composed of acrocentric and submetacentric chromosomes. The total number of chromosomes per karyotype is roughly inversely proportional to that of non-acrocentric chromosomes, which suggests the occurrence of frequent robertsonian-like fusions or fissions during evolution. Furthermore, the behaviour and morphological changes of chromosomes along the various phases of meiosis do not seem to differ much from those of canonical meiosis. In particular, at metaphase II chromosomes clearly have 2 sister chromatids, which refutes that anaphase I was equational. Thus, we propose an alternative mechanism to holocentricity for explaining the large variations in chromosome numbers in butterflies: (1) in the ancestral karyotype, composed of about 62 mostly acrocentric chromosomes, the centromeres, devoid of centromeric heterochromatin/satellite DNA, were located at contact with telomeric heterochromatin; (2) the instability of telomeric heterochromatin largely contributed to drive the multiple rearrangements, principally chromosome fusions, which occurred during butterfly evolution.


Assuntos
Borboletas , Humanos , Animais , Borboletas/genética , Heterocromatina , DNA Satélite , Cromossomos , Centrômero , Meiose , Cromátides , Cariotipagem , Mamíferos/genética
8.
Elife ; 102021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34930525

RESUMO

Müllerian mimicry is a positive interspecific interaction, whereby co-occurring defended prey species share a common aposematic signal. In Lepidoptera, aposematic species typically harbour conspicuous opaque wing colour patterns with convergent optical properties among co-mimetic species. Surprisingly, some aposematic mimetic species have partially transparent wings, raising the questions of whether optical properties of transparent patches are also convergent, and of how transparency is achieved. Here, we conducted a comparative study of wing optics, micro and nanostructures in neotropical mimetic clearwing Lepidoptera, using spectrophotometry and microscopy imaging. We show that transparency, as perceived by predators, is convergent among co-mimics in some mimicry rings. Underlying micro- and nanostructures are also sometimes convergent despite a large structural diversity. We reveal that while transparency is primarily produced by microstructure modifications, nanostructures largely influence light transmission, potentially enabling additional fine-tuning in transmission properties. This study shows that transparency might not only enable camouflage but can also be part of aposematic signals.


Assuntos
Evolução Biológica , Mimetismo Biológico , Borboletas/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Cor , Equador , Feminino , Masculino , Peru
9.
J Evol Biol ; 34(11): 1840-1846, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601773

RESUMO

Lepidoptera-a group of insects in which wing transparency has arisen multiple times-exhibits much variation in the size and position of transparent wing zones. However, little is known as to how this variability affects detectability. Here, we test how the size and position of transparent elements affect the predation of artificial moths by wild birds in the field. Morphs with transparent elements touching wing borders showed a reduced predation risk, with the effect being the same regardless of the number of wing borders being touched. By contrast, transparent element size had little to no effect on predation risk. Overall, this experiment shows for the first time that transparency offers higher protection when it disrupts prey contour in terrestrial habitats.


Assuntos
Mariposas , Pigmentação , Animais , Aves , Comportamento Predatório , Asas de Animais
10.
Nat Commun ; 12(1): 5717, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588433

RESUMO

The global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies.


Assuntos
Distribuição Animal , Biodiversidade , Borboletas/fisiologia , Clima Tropical , Animais , Extinção Biológica , Genes de Insetos , Especiação Genética , Geografia , Filogenia , Análise Espaço-Temporal
11.
J Evol Biol ; 34(11): 1704-1721, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34570954

RESUMO

Ecological speciation entails divergent selection on specific traits and ultimately on the developmental pathways responsible for these traits. Selection can act on gene sequences but also on regulatory regions responsible for gene expression. Mimetic butterflies are a relevant system for speciation studies because wing colour pattern (WCP) often diverges between closely related taxa and is thought to drive speciation through assortative mating and increased predation on hybrids. Here, we generate the first transcriptomic resources for a mimetic butterfly of the tribe Ithomiini, Melinaea marsaeus, to examine patterns of differential expression between two subspecies and between tissues that express traits that likely drive reproductive isolation; WCP and chemosensory genes. We sequenced whole transcriptomes of three life stages to cover a large catalogue of transcripts, and we investigated differential expression between subspecies in pupal wing discs and antennae. Eighteen known WCP genes were expressed in wing discs and 115 chemosensory genes were expressed in antennae, with a remarkable diversity of chemosensory protein genes. Many transcripts were differentially expressed between subspecies, including two WCP genes and one odorant receptor. Our results suggest that in M. marsaeus the same genes as in other mimetic butterflies are involved in traits causing reproductive isolation, and point at possible candidates for the differences in those traits between subspecies. Differential expression analyses of other developmental stages and body organs and functional studies are needed to confirm and expand these results. Our work provides key resources for comparative genomics in mimetic butterflies, and more generally in Lepidoptera.


Assuntos
Borboletas , Animais , Borboletas/genética , Perfilação da Expressão Gênica , Isolamento Reprodutivo , Transcriptoma , Asas de Animais
12.
J Evol Biol ; 34(10): 1592-1607, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34449944

RESUMO

Assessing the relative importance of geographical and ecological drivers of evolution is paramount to understand the diversification of species and traits at the macroevolutionary scale. Here, we use an integrative approach, combining phylogenetics, biogeography, ecology and quantified phenotypes to investigate the drivers of both species and phenotypic diversification of the iconic Neotropical butterfly genus Morpho. We generated a time-calibrated phylogeny for all known species and inferred historical biogeography. We fitted models of time-dependent (accounting for rate heterogeneity across the phylogeny) and paleoenvironment-dependent diversification (accounting for global effect on the phylogeny). We used geometric morphometrics to assess variation of wing size and shape across the tree and investigated their dynamics of evolution. We found that the diversification of Morpho is best explained when considering variable diversification rates across the tree, possibly associated with lineages occupying different microhabitat conditions. First, a shift from understory to canopy was characterized by an increased speciation rate partially coupled with an increasing rate of wing shape evolution. Second, the occupation of dense bamboo thickets accompanying a major host-plant shift from dicotyledons towards monocotyledons was associated with a simultaneous diversification rate shift and an evolutionary 'jump' of wing size. Our study points to a diversification pattern driven by punctuational ecological changes instead of a global driver or biogeographic history.


Assuntos
Borboletas , Animais , Evolução Biológica , Borboletas/genética , Especiação Genética , Fenótipo , Filogenia , Asas de Animais
13.
J Exp Biol ; 224(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34047337

RESUMO

The wings of butterflies and moths (Lepidoptera) are typically covered with thousands of flat, overlapping scales that endow the wings with colorful patterns. Yet, numerous species of Lepidoptera have evolved highly transparent wings, which often possess scales of altered morphology and reduced size, and the presence of membrane surface nanostructures that dramatically reduce reflection. Optical properties and anti-reflective nanostructures have been characterized for several 'clearwing' Lepidoptera, but the developmental processes underlying wing transparency are unknown. Here, we applied confocal and electron microscopy to create a developmental time series in the glasswing butterfly, Greta oto, comparing transparent and non-transparent wing regions. We found that during early wing development, scale precursor cell density was reduced in transparent regions, and cytoskeletal organization during scale growth differed between thin, bristle-like scale morphologies within transparent regions and flat, round scale morphologies within opaque regions. We also show that nanostructures on the wing membrane surface are composed of two layers: a lower layer of regularly arranged nipple-like nanostructures, and an upper layer of irregularly arranged wax-based nanopillars composed predominantly of long-chain n-alkanes. By chemically removing wax-based nanopillars, along with optical spectroscopy and analytical simulations, we demonstrate their role in generating anti-reflective properties. These findings provide insight into morphogenesis and composition of naturally organized microstructures and nanostructures, and may provide bioinspiration for new anti-reflective materials.


Assuntos
Borboletas , Nanoestruturas , Animais , Morfogênese , Pigmentação , Asas de Animais
14.
J Chem Ecol ; 47(6): 577-587, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34003420

RESUMO

Chemical defences in animals are both incredibly widespread and highly diverse. Yet despite the important role they play in mediating interactions between predators and prey, extensive differences in the amounts and types of chemical compounds can exist between individuals, even within species and populations. Here we investigate the potential role of environment and development on the chemical defences of warningly coloured butterfly species from the tribe Heliconiini, which can both synthesize and sequester cyanogenic glycosides (CGs). We reared 5 Heliconiini species in captivity, each on a single species-specific host plant as larvae, and compared them to individuals collected in the wild to ascertain whether the variation in CG content observed in the field might be the result of differences in host plant availability. Three of these species were reared as larvae on the same host plant, Passiflora riparia, to further test how species, sex, and age affected the type and amount of different defensive CGs, and how they affected the ratio of synthesized to sequestered compounds. Then, focusing on the generalist species Heliconius numata, we specifically explored variation in chemical profiles as a result of the host plant consumed by caterpillars and their brood line, using rearing experiments carried out on two naturally co-occurring host plants with differing CG profiles. Our results show significant differences in both the amount of synthesized and sequestered compounds between butterflies reared in captivity and those collected in the field. We also found a significant effect of species and an effect of sex in some, but not all, species. We show that chemical defences in H. numata continue to increase throughout their life, likely because of continued biosynthesis, and we suggest that variation in the amount of synthesized CGs in this species does not appear to stem from larval host plants, although this warrants further study. Interestingly, we detected a significant effect of brood lines, consistent with heritability influencing CG concentrations in H. numata. Altogether, our results point to multiple factors resulting in chemical defence variation in Heliconiini butterflies and highlight the overlooked effect of synthesis capabilities, which may be genetically determined to some extent.


Assuntos
Borboletas/crescimento & desenvolvimento , Borboletas/metabolismo , Meio Ambiente , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Borboletas/fisiologia , Feminino , Masculino , Especificidade da Espécie
15.
Proc Biol Sci ; 288(1946): 20203052, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33715434

RESUMO

Most research on aposematism has focused on chemically defended prey, but the signalling difficulty of capture remains poorly explored. Similar to classical Batesian and Müllerian mimicry related to distastefulness, such 'evasive aposematism' may also lead to convergence in warning colours, known as evasive mimicry. A prime candidate group for evasive mimicry are Adelpha butterflies, which are agile insects and show remarkable colour pattern convergence. We tested the ability of naive blue tits to learn to avoid and generalize Adelpha wing patterns associated with the difficulty of capture and compared their response to that of birds that learned to associate the same wing patterns with distastefulness. Birds learned to avoid all wing patterns tested and generalized their aversion to other prey to some extent, but learning was faster with evasive prey compared to distasteful prey. Our results on generalization agree with longstanding observations of striking convergence in wing colour patterns among Adelpha species, since, in our experiments, perfect mimics of evasive and distasteful models were always protected during generalization and suffered the lowest attack rate. Moreover, generalization on evasive prey was broader compared to that on distasteful prey. Our results suggest that being hard to catch may deter predators at least as effectively as distastefulness. This study provides empirical evidence for evasive mimicry, a potentially widespread but poorly understood form of morphological convergence driven by predator selection.


Assuntos
Mimetismo Biológico , Borboletas , Aves Canoras , Animais , Evolução Biológica , Modelos Biológicos , Comportamento Predatório , Asas de Animais
16.
Beilstein J Org Chem ; 16: 2776-2787, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281981

RESUMO

Male ithomiine butterflies (Nymphalidae: Danainae) have hairpencils on the forewings (i.e., androconia) that disseminate semiochemicals during courtship. While most ithomiines are known to contain derivatives of pyrrolizidine alkaloids, dihydropyrrolizines, or γ-lactones in these androconia, here we report on a new class of fatty acid esters identified in two subspecies, Ithomia salapia aquinia and I. s. derasa. The major components were identified as isoprenyl (3-methyl-3-butenyl) (Z)-3-acetoxy-11-octadecenoate, isoprenyl (Z)-3-acetoxy-13-octadecenoate (12) and isoprenyl 3-acetoxyoctadecanoate (11) by GC/MS and GC/IR analyses, microderivatizations, and synthesis of representative compounds. The absolute configuration of 12 was determined to be R. The two subspecies differed not only in the composition of the ester bouquet, but also in the composition of more volatile androconial constituents. While some individuals of I. s. aquinia contained ithomiolide A (3), a pyrrolizidine alkaloid derived γ-lactone, I. s. derasa carried the sesquiterpene α-elemol (8) in the androconia. These differences might be important for the reproductive isolation of the two subspecies, in line with previously reported low gene exchange between the two species in regions where they co-occur. Furthermore, the occurrence of positional isomers of unsaturated fatty acid derivatives indicates activity of two different desaturases within these butterflies, Δ9 and Δ11, which has not been reported before in male Lepidoptera.

17.
Nat Commun ; 11(1): 2686, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483158

RESUMO

Despite growing concern over consequences of global changes, we still know little about potential interactive effects of anthropogenic perturbations and diversity loss on the stability of local communities, especially for taxa other than plants. Here we analyse the relationships among landscape composition, biodiversity and community stability looking at time series of three types of communities, i.e., bats, birds and butterflies, monitored over the years by citizen science programs in France. We show that urban and intensive agricultural landscapes as well as diversity loss destabilize these communities but in different ways: while diversity loss translates into greater population synchrony, urban and intensive agricultural landscapes mainly decrease mean population stability. In addition to highlight the stabilizing effects of diversity on ecologically important but overlooked taxa, our results further reveal new pathways linking anthropogenic activities to diversity and stability.


Assuntos
Agricultura/métodos , Urbanização , Animais , Biodiversidade , Aves/classificação , Borboletas/classificação , Quirópteros/classificação , Conservação dos Recursos Naturais/estatística & dados numéricos , Ecossistema , França , Filogenia , Dinâmica Populacional , Análise de Componente Principal
18.
Ecol Evol ; 10(5): 2677-2694, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32185010

RESUMO

Evolutionary convergence of color pattern in mimetic species is tightly linked with the evolution of chemical defenses. Yet, the evolutionary forces involved in natural variations of chemical defenses in aposematic species are still understudied. Herein, we focus on the evolution of chemical defenses in the butterfly tribe Heliconiini. These neotropical butterflies contain large concentrations of cyanogenic glucosides, cyanide-releasing compounds acting as predator deterrent. These compounds are either de novo synthesized or sequestered from their Passiflora host plant, so that their concentrations may depend on host plant specialization and host plant availability. We sampled 375 wild Heliconiini butterflies across Central and South America, covering 43% species of this clade, and quantify individual variations in the different CGs using liquid chromatography coupled with tandem mass spectrometry. We detected new compounds and important variations in chemical defenses both within and among species. Based on the most recent and well-studied phylogeny of Heliconiini, we show that ecological factors such as mimetic interactions and host plant specialization have a significant association with chemical profiles, but these effects are largely explained by phylogenetic relationships. Our results therefore suggest that shared ancestries largely contribute to chemical defense variation, pointing out at the interaction between historical and ecological factors in the evolution of Müllerian mimicry.

19.
Mol Ecol ; 29(7): 1328-1343, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32145112

RESUMO

Hybrid zones, whereby divergent lineages come into contact and eventually hybridize, can provide insights on the mechanisms involved in population differentiation and reproductive isolation, and ultimately speciation. Suture zones offer the opportunity to compare these processes across multiple species. In this paper we use reduced-complexity genomic data to compare the genetic and phenotypic structure and hybridization patterns of two mimetic butterfly species, Ithomia salapia and Oleria onega (Nymphalidae: Ithomiini), each consisting of a pair of lineages differentiated for their wing colour pattern and that come into contact in the Andean foothills of Peru. Despite similarities in their life history, we highlight major differences, both at the genomic and phenotypic level, between the two species. These differences include the presence of hybrids, variations in wing phenotype, and genomic patterns of introgression and differentiation. In I. salapia, the two lineages appear to hybridize only rarely, whereas in O. onega the hybrids are not only more common, but also genetically and phenotypically more variable. We also detected loci statistically associated with wing colour pattern variation, but in both species these loci were not over-represented among the candidate barrier loci, suggesting that traits other than wing colour pattern may be important for reproductive isolation. Our results contrast with the genomic patterns observed between hybridizing lineages in the mimetic Heliconius butterflies, and call for a broader investigation into the genomics of speciation in Ithomiini - the largest radiation of mimetic butterflies.


Assuntos
Borboletas/genética , Genética Populacional , Hibridização Genética , Animais , Borboletas/classificação , Especiação Genética , Genoma de Inseto , Genótipo , Peru , Fenótipo , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Asas de Animais/anatomia & histologia
20.
J Evol Biol ; 33(2): 247-252, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31643116

RESUMO

Predation is a ubiquitous and strong selective pressure on living organisms. Transparency is a predation defence widespread in water but rare on land. Some Lepidoptera display transparent patches combined with already cryptic opaque patches. A recent study showed that transparency reduced detectability of aposematic prey with conspicuous patches. However, whether transparency has any effect at reducing detectability of already cryptic prey is still unknown. We conducted field predation experiments with free avian predators where we monitored and compared survival of a fully opaque grey artificial form (cryptic), a form including transparent windows and a wingless artificial butterfly body. Survival of the transparent forms was similar to that of wingless bodies and higher than that of fully opaque forms, suggesting a reduction of detectability conferred by transparency. This is the first evidence that transparency decreases detectability in cryptic terrestrial prey. Future studies should explore the organization of transparent and opaque patches in animals and their interplay on survival, as well as the costs and other potential benefits associated with transparency on land.


Assuntos
Mariposas/fisiologia , Pigmentação/fisiologia , Animais , Comportamento Predatório , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...