Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-481499

RESUMO

There is significant interest in T-cell mediated immunity against SARS-CoV-2. Both vaccination and infection have been observed to elicit durable T-cell responses against the virus. The classical role of CD4+ T-cell responses in coordinating humoral immunity is well understood but it is less clear to what degree, if any, T-cell responses play a direct protective role against infection In this study we vaccinated BALB/c mice with peptides derived from the SARS-CoV-2 proteome designed to either elicit T-cell responses or B-cell responses against linear epitopes. These peptides were administered in combination with either of two adjuvants, poly(I:C) and the STING agonist BI-1387466. Both adjuvants consistently elicited responses against the same peptides, preferentially from the group selected for predicted T-cell immunogenicity. The magnitude of T-cell responses was, however, significantly higher with BI-1387466 compared with poly(I:C). Neither adjuvant group, however, provided any protection against infection with the murine adapted virus SARS-CoV-2-MA10 or from disease following infection.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-481089

RESUMO

Defects in mitochondrial oxidative phosphorylation (OXPHOS) have been reported in COVID-19 patients, but the timing and organs affected vary among reports. Here, we reveal the dynamics of COVID-19 through transcription profiles in nasopharyngeal and autopsy samples from patients and infected rodent models. While mitochondrial bioenergetics is repressed in the viral nasopharyngeal portal of entry, it is up regulated in autopsy lung tissues from deceased patients. In most disease stages and organs, discrete OXPHOS functions are blocked by the virus, and this is countered by the host broadly up regulating unblocked OXPHOS functions. No such rebound is seen in autopsy heart, results in severe repression of genes across all OXPHOS modules. Hence, targeted enhancement of mitochondrial gene expression may mitigate the pathogenesis of COVID-19. One-Sentence SummaryCovid-19 is associated with targeted inhibition of mitochondrial gene transcription.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA