Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 157(24): 244504, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36586975

RESUMO

We investigate the structural relaxation of a soft-sphere liquid quenched isochorically (ϕ = 0.7) and instantaneously to different temperatures Tf above and below the glass transition. For this, we combine extensive Brownian dynamics simulations and theoretical calculations based on the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory. The response of the liquid to a quench generally consists of a sub-linear increase of the α-relaxation time with system's age. Approaching the ideal glass-transition temperature from above (Tf > Ta), sub-aging appears as a transient process describing a broad equilibration crossover for quenches to nearly arrested states. This allows us to empirically determine an equilibration timescale teq(Tf) that becomes increasingly longer as Tf approaches Ta. For quenches inside the glass (Tf ≤ Ta), the growth rate of the structural relaxation time becomes progressively larger as Tf decreases and, unlike the equilibration scenario, τα remains evolving within the whole observation time-window. These features are consistently found in theory and simulations with remarkable semi-quantitative agreement and coincide with those revealed in a previous and complementary study [P. Mendoza-Méndez et al., Phys. Rev. 96, 022608 (2017)] that considered a sequence of quenches with fixed final temperature Tf = 0 but increasing ϕ toward the hard-sphere dynamical arrest volume fraction ϕHS a=0.582. The NE-SCGLE analysis, however, unveils various fundamental aspects of the glass transition, involving the abrupt passage from the ordinary equilibration scenario to the persistent aging effects that are characteristic of glass-forming liquids. The theory also explains that, within the time window of any experimental observation, this can only be observed as a continuous crossover.


Assuntos
Vidro , Simulação de Dinâmica Molecular , Temperatura , Temperatura de Transição , Vidro/química
2.
Phys Rev E ; 100(4-1): 042601, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770981

RESUMO

We contrast the generic features of structural relaxation close to the idealized glass transition that are predicted by the self-consistent generalized Langevin equation theory (SCGLE) against those that are predicted by the mode-coupling theory of the glass transition (MCT). We present an asymptotic solution close to conditions of kinetic arrest that is valid for both theories, despite the different starting points that are adopted in deriving them. This in particular provides the same level of understanding of the asymptotic dynamics in the SCGLE as was previously done only for MCT. We discuss similarities and different predictions of the two theories for kinetic arrest in standard glass-forming models, as exemplified through the hard-sphere system. Qualitative differences are found for models where a decoupling of relaxation modes is predicted, such as the generalized Gaussian core model, or binary hard-sphere mixtures of particles with very disparate sizes. These differences, which arise in the distinct treatment of the memory kernels associated to self- and collective motion of particles, lead to distinct scenarios that are predicted by each theory for partially arrested states and in the vicinity of higher-order glass-transition singularities.

3.
J Phys Chem B ; 120(32): 7975-87, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27461585

RESUMO

The nonequilibrium self-consistent generalized Langevin equation theory of irreversible processes in liquids is extended to describe the positional and orientational thermal fluctuations of the instantaneous local concentration profile n(r,Ω,t) of a suddenly quenched colloidal liquid of particles interacting through nonspherically symmetric pairwise interactions, whose mean value n(r,Ω,t) is constrained to remain uniform and isotropic, n (r,Ω, t) = n (t). Such self-consistent theory is cast in terms of the time-evolution equation of the covariance [Formula: see text] of the fluctuations [Formula: see text] of the spherical harmonics projections nlm(k;t) of the Fourier transform of n(r,Ω,t). The resulting theory describes the nonequilibrium evolution after a sudden temperature quench of both, the static structure factor projections Slm(k,t) and the two-time correlation function [Formula: see text], where τ is the correlation delay time and t is the evolution or waiting time after the quench. As a concrete and illustrative application we use the resulting self-consistent equations to describe the irreversible processes of equilibration or aging of the orientational degrees of freedom of a system of strongly interacting classical dipoles with quenched positional disorder.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 052301, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493790

RESUMO

A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...