Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230766

RESUMO

For the effective management of infected chronic wounds, the incorporation of antimicrobial drugs into wound dressings can increase their local availability at the infection site. Mesoporous silicon dioxide SBA-15 is an excellent drug carrier with tunable drug release kinetics. In this work, synthesized SBA-15 loaded with the natural antimicrobial compound thymol (THY) was incorporated into polycaprolactone (PCL) electrospun nanofibers to obtain an advanced wound dressing. Rod-shaped particles with internal parallel channels oriented along the longitudinal axis (diameter: 138 ± 30 nm, length: 563 ± 100 nm) were loaded with 70.8 wt.% of THY. Fiber mats were prepared using these particles as nanofillers within polycaprolactone (PCL) electrospun fibers. The resulting mats contained 5.6 wt.% of THY and more than half of this loading was released in the first 7 h. This release would prevent an initial bacterial colonization and also inhibit or eliminate bacterial growth as in vitro shown against Staphylococcus aureus ATCC 25923. Minimal inhibitory concentration (MIC: 0.07 mg/mL) and minimal bactericidal concentration (MBC: 0.11 mg/mL) of released THY were lower than the amount of free THY required, demonstrating the benefit of drug encapsulation for a more efficient bactericidal capacity due to the direct contact between mats and bacteria.

2.
Molecules ; 23(6)2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890713

RESUMO

Even though essential oils (EOs) have been used for therapeutic purposes, there is now a renewed interest in the antimicrobial properties of phytochemicals and EOs in particular. Their demonstrated low levels of induction of antimicrobial resistance make them interesting for bactericidal applications, though their complex composition makes it necessary to focus on the study of their main components to identify the most effective ones. Herein, the evaluation of the antimicrobial action of different molecules present in EOs against planktonic and biofilm-forming Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was assessed. The bactericidal mechanisms of the different molecules, as well as their cytocompatibility, were also studied. Carvacrol, cinnamaldehyde, and thymol exhibit the highest in vitro antimicrobial activities against E. coli and S. aureus, with membrane disruption the bactericidal mechanism identified. The addition of those compounds (≥0.5 mg/mL) hampers S. aureus biofilm formation and partially eliminates preformed biofilms. The subcytotoxic values of the tested EO molecules (0.015⁻0.090 mg/mL) are lower than the minimum inhibitory and bactericidal concentrations obtained for bacteria (0.2⁻0.5 mg/mL) but are higher than that obtained for chlorhexidine (0.004 mg/mL), indicating the reduced cytotoxicity of EOs. Therefore, carvacrol, cinnamaldehyde, and thymol are molecules contained in EOs that could be used against E. coli⁻ and S. aureus⁻mediated infections without a potential induction of bactericidal resistance and with lower cell toxicity than the conventional widely used chlorhexidine.


Assuntos
Anti-Infecciosos/farmacologia , Óleos Voláteis/farmacologia , Anti-Infecciosos/química , Bandagens , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Óleos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...