Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Space Sci Rev ; 219(3): 25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034007

RESUMO

The NASA Psyche mission's program to engage university undergraduates and the public in the mission is inspired by and built upon the extensive foundation of public engagement, educational outreach activities, and expertise of NASA and mission partner institutions. The program leverages the enthusiasm and contributions of undergraduates nationwide to the benefit of the mission, the students and their institutions and communities, and the broader public. Psyche Student Collaborations consists of four main programs, two (Psyche Capstone and Psyche Inspired) are available solely to undergraduates enrolled at universities or community colleges in the United States and its territories and two (Innovation Toolkit free online courses and Science Outreach Interns and Docents) invite broader participation by engaging the talents and creativity of undergraduate interns to help create content and events to reach the public and lifelong learners. Together, these offerings provide multiple entry points and a spectrum of intensity of experiences, numbers of participants, disciplinary diversity, and mode of delivery. Involving undergraduates in all phases of the program supports the development of the next generation of explorers, contributes to the nation's workforce preparation, and complements NASA's existing undergraduate offerings by providing long-term opportunities for students to participate with the mission through established postsecondary education structures like capstone courses.

2.
Space Sci Rev ; 219(3): 22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007705

RESUMO

The objective of the Psyche Magnetometry Investigation is to test the hypothesis that asteroid (16) Psyche formed from the core of a differentiated planetesimal. To address this, the Psyche Magnetometer will measure the magnetic field around the asteroid to search for evidence of remanent magnetization. Paleomagnetic measurements of meteorites and dynamo theory indicate that a diversity of planetesimals once generated dynamo magnetic fields in their metallic cores. Likewise, the detection of a strong magnetic moment ( > 2 × 10 14 Am 2 ) at Psyche would likely indicate that the body once generated a core dynamo, implying that it formed by igneous differentiation. The Psyche Magnetometer consists of two three-axis fluxgate Sensor Units (SUs) mounted 0.7 m apart along a 2.15-m long boom and connected to two Electronics Units (EUs) located within the spacecraft bus. The Magnetometer samples at up to 50 Hz, has a range of ± 80 , 000 nT , and an instrument noise of 39 pT axis - 1 3 σ integrated over 0.1 to 1 Hz. The two pairs of SUs and EUs provide redundancy and enable gradiometry measurements to suppress noise from flight system magnetic fields. The Magnetometer will be powered on soon after launch and acquire data for the full duration of the mission. The ground data system processes the Magnetometer measurements to obtain an estimate of Psyche's dipole moment.

3.
Space Sci Rev ; 218(3): 17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431348

RESUMO

The asteroid (16) Psyche may be the metal-rich remnant of a differentiated planetesimal, or it may be a highly reduced, metal-rich asteroidal material that never differentiated. The NASA Psyche mission aims to determine Psyche's provenance. Here we describe the possible solar system regions of origin for Psyche, prior to its likely implantation into the asteroid belt, the physical and chemical processes that can enrich metal in an asteroid, and possible meteoritic analogs. The spacecraft payload is designed to be able to discriminate among possible formation theories. The project will determine Psyche's origin and formation by measuring any strong remanent magnetic fields, which would imply it was the core of a differentiated body; the scale of metal to silicate mixing will be determined by both the neutron spectrometers and the filtered images; the degree of disruption between metal and rock may be determined by the correlation of gravity with composition; some mineralogy (e.g., modeled silicate/metal ratio, and inferred existence of low-calcium pyroxene or olivine, for example) will be detected using filtered images; and the nickel content of Psyche's metal phase will be measured using the GRNS.

4.
Philos Trans A Math Phys Eng Sci ; 376(2132)2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275166

RESUMO

Magma oceans are a common result of the high degree of heating that occurs during planet formation. It is thought that almost all of the large rocky bodies in the Solar System went through at least one magma ocean phase. In this paper, we review some of the ways in which magma ocean models for the Earth, Moon and Mars match present-day observations of mantle reservoirs, internal structure and primordial crusts, and then we present new calculations for the oxidation state of the mantle produced during the magma ocean phase. The crystallization of magma oceans probably leads to a massive mantle overturn that may set up a stably stratified mantle. This may lead to significant delays or total prevention of plate tectonics on some planets. We review recent models that may help alleviate the mantle stability issue and lead to earlier onset of plate tectonics.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.

6.
Philos Trans A Math Phys Eng Sci ; 375(2094)2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28416729

RESUMO

The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

7.
Sci Am ; 315(6): 42-49, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28004680
8.
Philos Trans A Math Phys Eng Sci ; 372(2024): 20130240, 2014 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-25114310

RESUMO

The lack of contraction features on the Moon has been used to argue that the Moon underwent limited secular cooling, and thus had a relatively cool initial state. A cool early state in turn limits the depth of the lunar magma ocean. Recent GRAIL gravity measurements, however, suggest that dikes were emplaced in the lower crust, requiring global lunar expansion. Starting from the magma ocean state, we show that solidification of the lunar magma ocean would most likely result in expansion of the young lunar crust, and that viscous relaxation of the crust would prevent early tectonic features of contraction or expansion from being recorded permanently. The most likely process for creating the expansion recorded by the dikes is melting during cumulate overturn of the newly solidified lunar mantle.

9.
Astrobiology ; 13(9): 793-813, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24015759

RESUMO

A scientific forum on "The Future Science of Exoplanets and Their Systems," sponsored by Europlanet and the International Space Science Institute (ISSI) and co-organized by the Center for Space and Habitability (CSH) of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history. Several important and timely research areas of focus for further research efforts in the field were identified by the forum participants. These scientific topics are related to the origin and formation of water and its delivery to planetary bodies and the role of the disk in relation to planet formation, including constraints from observations as well as star-planet interaction processes and their consequences for atmosphere-magnetosphere environments, evolution, and habitability. The relevance of these research areas is outlined in this report, and possible themes for future ISSI workshops are identified that may be proposed by the international research community over the coming 2-3 years.


Assuntos
Meio Ambiente Extraterreno , Planetas , Planeta Terra , Astros Celestes
10.
Nature ; 497(7451): 570-2, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23719457
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...