Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Microbiol Spectr ; 12(2): e0329123, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38189279

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages of the Omicron variant rapidly became dominant in early 2022 and frequently cause human infections despite vaccination or prior infection with other variants. In addition to antibody-evading mutations in the receptor-binding domain, Omicron features amino acid mutations elsewhere in the Spike protein; however, their effects generally remain ill defined. The Spike D796Y substitution is present in all Omicron sub-variants and occurs at the same site as a mutation (D796H) selected during viral evolution in a chronically infected patient. Here, we map antibody reactivity to a linear epitope in the Spike protein overlapping position 796. We show that antibodies binding this region arise in pre-Omicron SARS-CoV-2 convalescent and vaccinated subjects but that both D796Y and D796H abrogate their binding. These results suggest that D796Y contributes to the fitness of Omicron in hosts with pre-existing immunity to other variants of SARS-CoV-2 by evading antibodies targeting this site.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved substantially through the coronavirus disease 2019 (COVID-19) pandemic: understanding the drivers and consequences of this evolution is essential for projecting the course of the pandemic and developing new countermeasures. Here, we study the immunological effects of a particular mutation present in the Spike protein of all Omicron strains and find that it prevents the efficient binding of a class of antibodies raised by pre-Omicron vaccination and infection. These findings reveal a novel consequence of a poorly understood Omicron mutation and shed light on the drivers and effects of SARS-CoV-2 evolution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus , Mutação , Anticorpos Antivirais , Anticorpos Neutralizantes
3.
Nat Protoc ; 18(2): 396-423, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385198

RESUMO

PepSeq is an in vitro platform for building and conducting highly multiplexed proteomic assays against customizable targets by using DNA-barcoded peptides. Starting with a pool of DNA oligonucleotides encoding peptides of interest, this protocol outlines a fully in vitro and massively parallel procedure for synthesizing the encoded peptides and covalently linking each to a corresponding cDNA tag. The resulting libraries of peptide/DNA conjugates can be used for highly multiplexed assays that leverage high-throughput sequencing to profile the binding or enzymatic specificities of proteins of interest. Here, we describe the implementation of PepSeq for fast and cost-effective epitope-level analysis of antibody reactivity across hundreds of thousands of peptides from <1 µl of serum or plasma input. This protocol includes the design of the DNA oligonucleotide library, synthesis of DNA-barcoded peptide constructs, binding of constructs to sample, preparation for sequencing and data analysis. Implemented in this way, PepSeq can be used for a number of applications, including fine-scale mapping of antibody epitopes and determining a subject's pathogen exposure history. The protocol is divided into two main sections: (i) design and synthesis of DNA-barcoded peptide libraries and (ii) use of libraries for highly multiplexed serology. Once oligonucleotide templates are in hand, library synthesis takes 1-2 weeks and can provide enough material for hundreds to thousands of assays. Serological assays can be conducted in 96-well plates and generate sequencing data within a further ~4 d. A suite of software tools, including the PepSIRF package, are made available to facilitate the design of PepSeq libraries and analysis of assay data.


Assuntos
Biblioteca de Peptídeos , Proteômica , DNA/genética , Peptídeos/genética , Oligonucleotídeos/genética , Anticorpos
4.
Cell Rep ; 40(1): 111022, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35753310

RESUMO

The COVID-19 pandemic has triggered the first widespread vaccination campaign against a coronavirus. Many vaccinated subjects are previously naive to SARS-CoV-2; however, almost all have previously encountered other coronaviruses (CoVs), and the role of this immunity in shaping the vaccine response remains uncharacterized. Here, we use longitudinal samples and highly multiplexed serology to identify mRNA-1273 vaccine-induced antibody responses against a range of CoV Spike epitopes, in both phylogenetically conserved and non-conserved regions. Whereas reactivity to SARS-CoV-2 epitopes shows a delayed but progressive increase following vaccination, we observe distinct kinetics for the endemic CoV homologs at conserved sites in Spike S2: these become detectable sooner and decay at later time points. Using homolog-specific antibody depletion and alanine-substitution experiments, we show that these distinct trajectories reflect an evolving cross-reactive response that can distinguish rare, polymorphic residues within these epitopes. Our results reveal mechanisms for the formation of antibodies with broad reactivity against CoVs.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Epitopos , Humanos , Pandemias , SARS-CoV-2 , Vacinação
5.
medRxiv ; 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35118479

RESUMO

The COVID-19 pandemic has triggered the first widespread vaccination campaign against a coronavirus. Most vaccinated subjects are naïve to SARS-CoV-2, however almost all have previously encountered other coronaviruses (CoVs) and the role of this immunity in shaping the vaccine response remains uncharacterized. Here we use longitudinal samples and highly-multiplexed serology to identify mRNA-1273 vaccine-induced antibody responses against a range of CoV Spike epitopes and in both phylogenetically conserved and non-conserved regions. Whereas reactivity to SARS-CoV-2 epitopes showed a delayed but progressive increase following vaccination, we observed distinct kinetics for the endemic CoV homologs at two conserved sites in Spike S2: these became detectable sooner, and decayed at later timepoints. Using homolog-specific depletion and alanine-substitution experiments, we show that these distinctly-evolving specificities result from cross-reactive antibodies as they mature against rare, polymorphic residues within these epitopes. Our results reveal mechanisms for the formation of antibodies with broad reactivity against CoVs.

6.
J Biol Chem ; 296: 100665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33895140

RESUMO

Peroxiredoxins (PRDXs) catalyze the reduction of hydrogen peroxide (H2O2). PRDX4 is the only peroxiredoxin located within the endoplasmic reticulum (ER) and is the most highly expressed H2O2 scavenger in the ER. PRDX4 has emerged as an important player in numerous diseases, such as fibrosis and metabolic syndromes, and its overoxidation is a potential indicator of ER redox stress. It is unclear how overoxidation of PRDX4 governs its oligomerization state and interacting partners. Herein, we addressed these questions via nonreducing Western blots, mass spectrometry, and site-directed mutagenesis. We report that the oxidation of PRDX4 in lung epithelial cells treated with tertbutyl hydroperoxide caused a shift of PRDX4 from monomer/dimer to high molecular weight (HMW) species, which contain PRDX4 modified with sulfonic acid residues (PRDX4-SO3), as well as of a complement of ER-associated proteins, including protein disulfide isomerases important in protein folding, thioredoxin domain-containing protein 5, and heat shock protein A5, a key regulator of the ER stress response. Mutation of any of the four cysteines in PRDX4 altered the HMW species in response to tertbutyl hydroperoxide as well as the secretion of PRDX4. We also demonstrate that the expression of ER oxidoreductase 1 alpha, which generates H2O2 in the ER, increased PRDX4 HMW formation and secretion. These results suggest a link between SO3 modification in the formation of HMW PRDX4 complexes in cells, whereas the association of key regulators of ER homeostasis with HMW oxidized PRDX4 point to a putative role of PRDX4 in regulating ER stress responses.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Dobramento de Proteína , Animais , Camundongos , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
7.
Am J Physiol Cell Physiol ; 318(2): C304-C327, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693398

RESUMO

Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.


Assuntos
Glutarredoxinas/metabolismo , Glutationa/metabolismo , Pneumopatias/metabolismo , Pulmão/metabolismo , Sequência de Aminoácidos , Animais , Antioxidantes/metabolismo , Cisteína/metabolismo , Dissulfetos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Estresse Oxidativo/fisiologia
8.
Free Radic Biol Med ; 141: 438-446, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31315063

RESUMO

Aging is associated with enhanced oxidative stress and increased susceptibility to numerous diseases. This relationship is particularly striking with respect to the incidence of fibrotic lung disease. To identify potential mechanisms underlying the association between aging and susceptibility to fibrotic lung disease we analyzed transcriptome data from 342 disease-free human lung samples as a function of donor age. Our analysis reveals that aging in lung is accompanied by modest yet progressive changes in genes modulating redox homeostasis, the TGF-beta 1 signaling axis, and the extracellular matrix (ECM), pointing to an aging lung functional network (ALFN). Further, the transcriptional changes we document are tissue-specific, with age-dependent gene expression patterns differing across organ systems. Our findings suggest that the age-associated increased incidence of fibrotic pulmonary disease occurs in the context of tissue-specific, age-dependent transcriptional changes. Understanding the relationship between age-associated gene expression and susceptibility to fibrotic pulmonary disease may allow for more accurate risk stratification and effective therapeutic interventions within this challenging clinical space.


Assuntos
Envelhecimento/genética , Pneumopatias/genética , Fibrose Pulmonar/genética , Transcriptoma/genética , Adulto , Idoso , Envelhecimento/patologia , Suscetibilidade a Doenças , Matriz Extracelular/genética , Feminino , Regulação da Expressão Gênica/genética , Homeostase/genética , Humanos , Pneumopatias/patologia , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Oxirredução , Fibrose Pulmonar/patologia , Medição de Risco
9.
Antioxid Redox Signal ; 31(14): 1070-1091, 2019 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30799628

RESUMO

Significance: The lung is a unique organ, as it is constantly exposed to air, and thus it requires a robust antioxidant defense system to prevent the potential damage from exposure to an array of environmental insults, including oxidants. The peroxiredoxin (PRDX) family plays an important role in scavenging peroxides and is critical to the cellular antioxidant defense system. Recent Advances: Exciting discoveries have been made to highlight the key features of PRDXs that regulate the redox tone. PRDXs do not act in isolation as they require the thioredoxin/thioredoxin reductase/NADPH, sulfiredoxin (SRXN1) redox system, and in some cases glutaredoxin/glutathione, for their reduction. Furthermore, the chaperone function of PRDXs, controlled by the oxidation state, demonstrates the versatility in redox regulation and control of cellular biology exerted by this class of proteins. Critical Issues: Despite the long-known observations that redox perturbations accompany a number of pulmonary diseases, surprisingly little is known about the role of PRDXs in the etiology of these diseases. In this perspective, we review the studies that have been conducted thus far to address the roles of PRDXs in lung disease, or experimental models used to study these diseases. Intriguing findings, such as the secretion of PRDXs and the formation of autoantibodies, raise a number of questions about the pathways that regulate secretion, redox status, and immune response to PRDXs. Future Directions: Further understanding of the mechanisms by which individual PRDXs control lung inflammation, injury, repair, chronic remodeling, and cancer, and the importance of PRDX oxidation state, configuration, and client proteins that govern these processes is needed.


Assuntos
Pneumopatias/metabolismo , Pulmão/metabolismo , Peroxirredoxinas/metabolismo , Animais , Humanos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...