Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22279790

RESUMO

BackgroundSecondary infection (SI) diagnosis in COVID-19 is challenging, due to overlapping clinical presentations, practical limitations in obtaining samples from the lower respiratory tract (LRT), and low sensitivity of microbiologic cultures. Research QuestionCan metagenomic sequencing of plasma microbial cell-free DNA (mcfDNA-Seq) help diagnose SIs complicating COVID-19? Study Design and MethodsWe enrolled 42 inpatients with COVID-19 classified as microbiologically-confirmed SI (Micro-SI, n=8), clinically-diagnosed SI (Clinical-SI, n=13, i.e. empiric antimicrobials), or no clinical suspicion for SI (No-Suspected-SI, n=21) at time of enrollment. From baseline and follow-up plasma samples (days 5 and 10 post-enrollment), we quantified mcfDNA for all detected microbes by mcfDNA sequencing and measured nine host-response biomarkers. From LRT samples among intubated subjects, we quantified bacterial burden with 16S rRNA gene quantitative PCR. ResultsWe performed mcfDNA-Seq in 82 plasma samples. Sequencing was successful in 60/82 (73.2%) samples, which had significantly lower levels of human cfDNA than failed samples (p<0.0001). McfDNA detection was significantly higher in Micro-SI (15/16 [94%]) compared to Clinical-SI samples (8/14 [57%], p=0.03), and unexpectedly common in No-Suspected-SI samples (25/30 [83%]), similar to detection rate in Micro-SI. We detected culture-concordant mcfDNA species in 13/16 Micro-SI samples (81%) and mcfDNA levels tracked with SI outcome (resolution or persistence) under antibiotic therapy. McfDNA levels correlated significantly with LRT bacterial burden (r=0.74, p=0.02) as well as plasma biomarkers of host response (white blood cell count, IL-6, IL-8, and SPD, all p<0.05). Baseline mcfDNA levels were predictive of worse 90-day survival (hazard ratio 1.30 [1.02-1.64] for each log10 mcfDNA, p=0.03). InterpretationHigh circulating levels of mcfDNA in a substantial proportion of patients with COVID-19 without clinical suspicion for SI suggest that SIs may often remain undiagnosed. McfDNA-Seq, when clinically available, can offer a non-invasive diagnostic tool for pathogen identification, with prognostic value on host inflammatory response and clinical outcomes.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-490867

RESUMO

Since the emergence of SARS-CoV-2, humans have been exposed to distinct SARS-CoV-2 antigens, either by infection with different variants, and/or vaccination. Population immunity is thus highly heterogeneous, but the impact of such heterogeneity on the effectiveness and breadth of the antibody-mediated response is unclear. We measured antibody-mediated neutralisation responses against SARS-CoV-2Wuhan, SARS-CoV-2, SARS-CoV-2{delta} and SARS-CoV-2o pseudoviruses using sera from patients with distinct immunological histories, including naive, vaccinated, infected with SARS-CoV-2Wuhan, SARS-CoV-2 or SARS-CoV-2{delta}, and vaccinated/infected individuals. We show that the breadth and potency of the antibody-mediated response is influenced by the number, the variant, and the nature (infection or vaccination) of exposures, and that individuals with mixed immunity acquired by vaccination and natural exposure exhibit the broadest and most potent responses. Our results suggest that the interplay between host immunity and SARS-CoV-2 evolution will shape the antigenicity and subsequent transmission dynamics of SARS-CoV-2, with important implications for future vaccine design. Author SummaryNeutralising antibodies provide protection against viruses and are generated because of vaccination or prior infections. The main target of anti-SARS-CoV-2 neutralising antibodies is a protein called Spike, which decorates the viral particle and mediates viral entry into cells. As SARS-CoV-2 evolves, mutations accumulate in the spike protein, allowing the virus to escape antibody-mediated immunity and decreasing vaccine effectiveness. Multiple SARS-CoV-2 variants have appeared since the start of the COVID-19 pandemic, causing various waves of infection through the population and infecting-in some cases-people that had been previously infected or vaccinated. Since the antibody response is highly specific, individuals infected with different variants are likely to have different repertoires of neutralising antibodies. We studied the breadth and potency of the antibody-mediated response against different SARS-CoV-2 variants using sera from vaccinated people as well as from people infected with different variants. We show that potency of the antibody response against different SARS-CoV-2 variants depends on the particular variant that infected each person, the exposure type (infection or vaccination) and the number and order of exposures. Our study provides insight into the interplay between virus evolution and immunity, as well as important information for the development of better vaccination strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...