Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biochem J ; 478(13): 2665-2679, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34160020

RESUMO

The crystal structure of full-length T7 DNA polymerase in complex with its processivity factor thioredoxin and double-stranded DNA in the polymerization active site exhibits two novel structural motifs in family-A DNA polymerases: an extended ß-hairpin at the fingers subdomain, that interacts with the DNA template strand downstream the primer-terminus, and a helix-loop-helix motif (insertion1) located between residues 102 to 122 in the exonuclease domain. The extended ß-hairpin is involved in nucleotide incorporation on substrates with 5'-overhangs longer than 2 nt, suggesting a role in stabilizing the template strand into the polymerization domain. Our biochemical data reveal that insertion1 of the exonuclease domain makes stabilizing interactions that facilitate proofreading by shuttling the primer strand into the exonuclease active site. Overall, our studies evidence conservation of the 3'-5' exonuclease domain fold between family-A DNA polymerases and highlight the modular architecture of T7 DNA polymerase. Our data suggest that the intercalating ß-hairpin guides the template-strand into the polymerization active site after the T7 primase-helicase unwinds the DNA double helix ameliorating the formation of secondary structures and decreasing the appearance of indels.


Assuntos
Bacteriófago T7/enzimologia , Domínio Catalítico , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Bacteriófago T7/genética , DNA/química , DNA/genética , Primers do DNA/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Polimerização , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Moldes Genéticos , Proteínas Virais/química , Proteínas Virais/genética
2.
Nucleic Acids Res ; 49(1): 306-321, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330937

RESUMO

The XRCC1-DNA ligase IIIα complex (XL) is critical for DNA single-strand break repair, a key target for PARP inhibitors in cancer cells deficient in homologous recombination. Here, we combined biophysical approaches to gain insights into the shape and conformational flexibility of the XL as well as XRCC1 and DNA ligase IIIα (LigIIIα) alone. Structurally-guided mutational analyses based on the crystal structure of the human BRCT-BRCT heterodimer identified the network of salt bridges that together with the N-terminal extension of the XRCC1 C-terminal BRCT domain constitute the XL molecular interface. Coupling size exclusion chromatography with small angle X-ray scattering and multiangle light scattering (SEC-SAXS-MALS), we determined that the XL is more compact than either XRCC1 or LigIIIα, both of which form transient homodimers and are highly disordered. The reduced disorder and flexibility allowed us to build models of XL particles visualized by negative stain electron microscopy that predict close spatial organization between the LigIIIα catalytic core and both BRCT domains of XRCC1. Together our results identify an atypical BRCT-BRCT interaction as the stable nucleating core of the XL that links the flexible nick sensing and catalytic domains of LigIIIα to other protein partners of the flexible XRCC1 scaffold.


Assuntos
DNA Ligase Dependente de ATP/metabolismo , Reparo do DNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Cromatografia em Gel , Cristalografia por Raios X , DNA Ligase Dependente de ATP/química , Dimerização , Humanos , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos , Mutação , Mutação de Sentido Incorreto , Coloração Negativa , Mutação Puntual , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/química , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
3.
Nat Commun ; 10(1): 5654, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827085

RESUMO

Poly(ADP-ribose)ylation (PARylation) by PAR polymerase 1 (PARP1) and PARylation removal by poly(ADP-ribose) glycohydrolase (PARG) critically regulate DNA damage responses; yet, conflicting reports obscure PARG biology and its impact on cancer cell resistance to PARP1 inhibitors. Here, we found that PARG expression is upregulated in many cancers. We employed chemical library screening to identify and optimize methylxanthine derivatives as selective bioavailable PARG inhibitors. Multiple crystal structures reveal how substituent positions on the methylxanthine core dictate binding modes and inducible-complementarity with a PARG-specific tyrosine clasp and arginine switch, supporting inhibitor specificity and a competitive inhibition mechanism. Cell-based assays show selective PARG inhibition and PARP1 hyperPARylation. Moreover, our PARG inhibitor sensitizes cells to radiation-induced DNA damage, suppresses replication fork progression and impedes cancer cell survival. In PARP inhibitor-resistant A172 glioblastoma cells, our PARG inhibitor shows comparable killing to Nedaplatin, providing further proof-of-concept that selectively inhibiting PARG can impair cancer cell survival.


Assuntos
Replicação do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Neoplasias/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Poli ADP Ribosilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Bibliotecas de Moléculas Pequenas/química
4.
Biochemistry ; 58(45): 4466-4479, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659895

RESUMO

Recent structural studies of the bacteriophage T7 DNA replication system have shed light on how multiple proteins assemble to copy two antiparallel DNA strands. In T7, acidic C-terminal tails of both the primase-helicase and single-stranded DNA binding protein bind to two basic patches on the DNA polymerase to aid in replisome assembly, processivity, and coordinated DNA synthesis. Although these electrostatic interactions are essential for DNA replication, the molecular details for how these tails bind the polymerase are unknown. We have determined an X-ray crystal structure of the T7 DNA polymerase bound to both a primer/template DNA and a peptide that mimics the C-terminal tail of the primase-helicase. The structure reveals that the essential C-terminal phenylalanine of the tail binds to a hydrophobic pocket that is surrounded by positive charge on the surface of the polymerase. We show that alterations of polymerase residues that engage the tail lead to defects in viral replication. In the structure, we also observe dTTP bound in the exonuclease active site and stacked against tryptophan 160. Using both primer/extension assays and high-throughput sequencing, we show how mutations in the exonuclease active site lead to defects in mismatch repair and an increase in the level of mutagenesis of the T7 genome. Finally, using small-angle X-ray scattering, we provide the first solution structures of a complex between the single-stranded DNA binding protein and the DNA polymerase and show how a single-stranded DNA binding protein dimer engages both one and two copies of DNA polymerase.


Assuntos
Bacteriófago T7/fisiologia , DNA Polimerase Dirigida por DNA/química , Proteínas Virais/química , Bacteriófago T7/química , Domínio Catalítico , Cristalografia por Raios X , DNA Viral/química , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Ligação Proteica , Eletricidade Estática , Proteínas Virais/metabolismo , Replicação Viral
5.
Structure ; 25(1): 157-166, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052235

RESUMO

The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. Two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerase binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. Our collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.


Assuntos
Bacteriófago T7/enzimologia , DNA Primase/química , DNA Primase/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Bacteriófago T7/química , Sítios de Ligação , Cristalografia por Raios X , DNA Viral/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Structure ; 24(12): 2067-2079, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27818101

RESUMO

Apoptosis-inducing factor (AIF) is critical for mitochondrial respiratory complex biogenesis and for mediating necroptotic parthanatos; these functions are seemingly regulated by enigmatic allosteric switching driven by NADH charge-transfer complex (CTC) formation. Here, we define molecular pathways linking AIF's active site to allosteric switching regions by characterizing dimer-permissive mutants using small-angle X-ray scattering (SAXS) and crystallography and by probing AIF-CTC communication networks using molecular dynamics simulations. Collective results identify two pathways propagating allostery from the CTC active site: (1) active-site H454 links to S480 of AIF's central ß-strand to modulate a hydrophobic border at the dimerization interface, and (2) an interaction network links AIF's FAD cofactor, central ß-strand, and Cß-clasp whereby R529 reorientation initiates C-loop release during CTC formation. This knowledge of AIF allostery and its flavoswitch mechanism provides a foundation for biologically understanding and biomedically controlling its participation in mitochondrial homeostasis and cell death.


Assuntos
Fator de Indução de Apoptose/química , Fator de Indução de Apoptose/metabolismo , NAD/metabolismo , Regulação Alostérica , Domínio Catalítico , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
DNA Repair (Amst) ; 35: 106-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26519824

RESUMO

Exonuclease 1 (Exo1) has important roles in DNA metabolic transactions that are essential for genome maintenance, telomere regulation and cancer suppression. However, the mechanisms for regulating Exo1 activity in these processes remain incompletely understood. Here, we report that Exo1 activity is regulated by a direct interaction with poly(ADP-ribose) (PAR), a prominent posttranslational modification at the sites of DNA damage. This PAR-binding activity promotes the early recruitment of Exo1 to sites of DNA damage, where it is retained through an interaction with PCNA, which interacts with the C-terminus of Exo1. The effects of both PAR and PCNA on Exo1 damage association are antagonized by the 14-3-3 adaptor proteins, which interact with the central domain of Exo1. Although PAR binding inhibits both the exonuclease activity and the 5' flap endonuclease activity of purified Exo1, the pharmacological blockade of PAR synthesis does not overtly affect DNA double-strand break end resection in a cell free Xenopus egg extract. Thus, the counteracting effects of PAR on Exo1 recruitment and enzymatic activity may enable appropriate resection of DNA ends while preventing unscheduled or improper processing of DNA breaks in cells.


Assuntos
Dano ao DNA , Reparo do DNA , Exodesoxirribonucleases/metabolismo , Endonucleases Flap/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Extratos Celulares , Núcleo Celular , Glicosídeo Hidrolases/metabolismo , Células HEK293 , Humanos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases , Processamento de Proteína Pós-Traducional , Xenopus
8.
Nucleic Acids Res ; 43(14): 7021-31, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26130724

RESUMO

Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Ligases/metabolismo , DNA/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/química , Humanos , Modelos Moleculares , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Xenopus , Dedos de Zinco
9.
DNA Repair (Amst) ; 32: 10-16, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25963443

RESUMO

Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered.


Assuntos
Reparo do DNA , DNA/química , Glicosídeo Hidrolases/química , Poli Adenosina Difosfato Ribose/química , Poli(ADP-Ribose) Polimerases/química , DNA/metabolismo , Dano ao DNA , Glicosídeo Hidrolases/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
10.
J Biol Chem ; 290(19): 12300-12, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25833945

RESUMO

The DNA end resection process dictates the cellular response to DNA double strand break damage and is essential for genome maintenance. Although insufficient DNA resection hinders homology-directed repair and ATR (ataxia telangiectasia and Rad3 related)-dependent checkpoint activation, overresection produces excessive single-stranded DNA that could lead to genomic instability. However, the mechanisms controlling DNA end resection are poorly understood. Here we show that the major resection nuclease Exo1 is regulated both positively and negatively by protein-protein interactions to ensure a proper level of DNA resection. We have shown previously that the sliding DNA clamp proliferating cell nuclear antigen (PCNA) associates with the C-terminal domain of Exo1 and promotes Exo1 damage association and DNA resection. In this report, we show that 14-3-3 proteins interact with a central region of Exo1 and negatively regulate Exo1 damage recruitment and subsequent resection. 14-3-3s limit Exo1 damage association, at least in part, by suppressing its association with PCNA. Disruption of the Exo1 interaction with 14-3-3 proteins results in elevated sensitivity of cells to DNA damage. Unlike Exo1, the Dna2 resection pathway is apparently not regulated by PCNA and 14-3-3s. Our results provide critical insights into the mechanism and regulation of the DNA end resection process and may have implications for cancer treatment.


Assuntos
Proteínas 14-3-3/metabolismo , Quebras de DNA de Cadeia Dupla , Exodesoxirribonucleases/metabolismo , Regulação da Expressão Gênica , Antígeno Nuclear de Célula em Proliferação/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular , DNA/genética , Reparo do DNA , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Xenopus
11.
Cell Rep ; 10(10): 1665-1673, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25772354

RESUMO

The NAD+-dependent protein deacetylase SIRT1 regulates energy metabolism, responses to stress, and aging by deacetylating many different proteins, including histones and transcription factors. The mechanisms controlling SIRT1 enzymatic activity are complex and incompletely characterized, yet essential for understanding how to develop therapeutics that target SIRT1. Here, we demonstrate that the N-terminal domain of SIRT1 (NTERM) can trans-activate deacetylation activity by physically interacting with endogenous SIRT1 and promoting its association with the deacetylation substrate NF-κB p65. Two motifs within the NTERM domain contribute to activation of SIRT1-dependent activities, and expression of one of these motifs in mice is sufficient to lower fasting glucose levels and improve glucose tolerance in a manner similar to overexpression of SIRT1. Our results provide insights into the regulation of SIRT1 activity and a rationale for pharmacological control of SIRT1-dependent activities.

12.
J Biol Chem ; 290(6): 3775-83, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25477519

RESUMO

The posttranslational modification of proteins with poly(ADP-ribose) (PAR) regulates protein-protein interactions in DNA repair, gene expression, chromatin structure, and cell fate determination. The PAR polymerase PARP1 binds to damaged chromatin and synthesizes PAR chains to signal DNA damage and recruit the DNA repair scaffold, XRCC1. Pharmacological blockade of PARP1 enzymatic activity impairs XRCC1-dependent repair of DNA damage and selectively kills cancer cells lacking other DNA repair functions. As such, PARP inhibitors are promising new therapies for repair-deficient tumors such as BRCA mutated breast cancers. Although the XRCC1-PARP1 complex is relevant to the proposed therapeutic mechanism of PARP inhibitors, the physical makeup and dynamics of this complex are not well characterized at the molecular level. Here we describe a fluorescence-based, real-time assay that quantitatively monitors interactions between PARylated PARP1 and XRCC1. Using this assay, we show that the PAR posttranslational modification by itself is a high affinity ligand for XRCC1, requiring a minimum chain length of 7 ADP-ribose units in the oligo(ADP-ribose) ligand for a stable interaction with XRCC1. This discrete binding interface enables the PAR glycohydrolase (PARG) to completely disassemble the PARP1-XRCC1 complex without assistance from a mono(ADP-ribose) glycohydrolase. Our quantitative, real-time assay of PAR-dependent protein-protein interactions and PAR turnover by PARG is an excellent tool for high-throughput screening to identify pharmacological modulators of PAR metabolism that may be useful therapeutic alternatives to PARP inhibitors.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glicosídeo Hidrolases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Adenosina Difosfato Ribose/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/química , Humanos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/química , Ligação Proteica , Especificidade por Substrato , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
13.
Biochemistry ; 52(23): 4026-36, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23675753

RESUMO

Replisomes are multiprotein complexes that coordinate the synthesis of leading and lagging DNA strands to increase the replication efficiency and reduce DNA strand breaks caused by stalling of replication forks. The bacteriophage T7 replisome is an economical machine that requires only four proteins for processive, coupled synthesis of two DNA strands. Here we characterize a complex between T7 primase-helicase and DNA polymerase on DNA that was trapped during the initiation of Okazaki fragment synthesis from an RNA primer. This priming complex consists of two DNA polymerases and a primase-helicase hexamer that assemble on the DNA template in an RNA-dependent manner. The zinc binding domain of the primase-helicase is essential for trapping the RNA primer in complex with the polymerase, and a unique loop located on the thumb of the polymerase also stabilizes this primer extension complex. Whereas one of the polymerases engages the primase-helicase and RNA primer on the lagging strand of a model replication fork, the second polymerase in the complex is also functional and can bind a primed template DNA. These results indicate that the T7 primase-helicase specifically engages two copies of DNA polymerase, which would allow the coordination of leading and lagging strand synthesis at a replication fork. Assembly of the T7 replisome is driven by intimate interactions between the DNA polymerase and multiple subunits of the primase-helicase hexamer.


Assuntos
Bacteriófago T7/enzimologia , DNA Primase/química , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Substituição de Aminoácidos , Bacteriófago T7/genética , Sequência de Bases , Domínio Catalítico , DNA/química , DNA Primase/genética , DNA Viral/química , Substâncias Macromoleculares/química , Mutagênese Sítio-Dirigida , Polinucleotídeos/química , Ligação Proteica , Estrutura Quaternária de Proteína
14.
J Biol Chem ; 287(46): 39233-44, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22992732

RESUMO

XRCC1 plays a key role in the repair of DNA base damage and single-strand breaks. Although it has no known enzymatic activity, XRCC1 interacts with multiple DNA repair proteins and is a subunit of distinct DNA repair protein complexes. Here we used the yeast two-hybrid genetic assay to identify mutant versions of XRCC1 that are selectively defective in interacting with a single protein partner. One XRCC1 mutant, A482T, that was defective in binding to polynucleotide kinase phosphatase (PNKP) not only retained the ability to interact with partner proteins that bind to different regions of XRCC1 but also with aprataxin and aprataxin-like factor whose binding sites overlap with that of PNKP. Disruption of the interaction between PNKP and XRCC1 did not impact their initial recruitment to localized DNA damage sites but dramatically reduced their retention there. Furthermore, the interaction between PNKP and the DNA ligase IIIα-XRCC1 complex significantly increased the efficiency of reconstituted repair reactions and was required for complementation of the DNA damage sensitivity to DNA alkylation agents of xrcc1 mutant cells. Together our results reveal novel roles for the interaction between PNKP and XRCC1 in the retention of XRCC1 at DNA damage sites and in DNA alkylation damage repair.


Assuntos
Enzimas Reparadoras do DNA/química , Reparo do DNA , Proteínas de Ligação a DNA/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Sobrevivência Celular , Dano ao DNA , DNA Ligases/metabolismo , Regulação da Expressão Gênica , Humanos , Cinética , Microscopia Confocal/métodos , Mutação , Proteínas Nucleares/química , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Estrutura Terciária de Proteína , Treonina/química , Técnicas do Sistema de Duplo-Híbrido , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
15.
Nat Struct Mol Biol ; 19(6): 653-6, 2012 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-22609859

RESUMO

Reversible post-translational modification by poly(ADP-ribose) (PAR) regulates chromatin structure, DNA repair and cell fate in response to genotoxic stress. PAR glycohydrolase (PARG) removes PAR chains from poly ADP-ribosylated proteins to restore protein function and release oligo(ADP-ribose) chains to signal damage. Here we report crystal structures of mammalian PARG and its complex with a substrate mimic that reveal an open substrate-binding site and a unique 'tyrosine clasp' enabling endoglycosidic cleavage of branched PAR chains.


Assuntos
Glicosídeo Hidrolases/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Glicosídeo Hidrolases/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Ratos , Alinhamento de Sequência
16.
Mol Cell ; 46(1): 3-4, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22500734

RESUMO

In this issue of Molecular Cell, Walmacq et al. (2012) show that bypass of UV photodimers by RNA polymerase II during transcription unexpectedly contributes to survival following UV irradiation; this process may clear the way for transcription-coupled repair of DNA damage.

17.
Biochemistry ; 50(19): 4038-45, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21466233

RESUMO

Protein--protein interactions are ubiquitous and essential for most biological processes. Although new proteomic technologies have generated large catalogs of interacting proteins, considerably less is known about these interactions at the molecular level, information that would aid in predicting protein interactions, designing therapeutics to alter these interactions, and understanding the effects of disease-producing mutations. Here we describe mapping the interacting surfaces of the bacterial toxin SPN (Streptococcus pyogenes NAD(+) hydrolase) in complex with its antitoxin IFS (immunity factor for SPN) by using hydrogen-deuterium amide exchange and electrospray ionization mass spectrometry. This approach affords data in a relatively short time for small amounts of protein, typically 5-7 pmol per analysis. The results show a good correspondence with a recently determined crystal structure of the IFS--SPN complex but additionally provide strong evidence for a folding transition of the IFS protein that accompanies its binding to SPN. The outcome shows that mass-based chemical footprinting of protein interaction surfaces can provide information about protein dynamics that is not easily obtained by other methods and can potentially be applied to large, multiprotein complexes that are out of range for most solution-based methods of biophysical analysis.


Assuntos
Antitoxinas/química , Antitoxinas/metabolismo , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Streptococcus pyogenes/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Medição da Troca de Deutério , Ligação Proteica , Dobramento de Proteína , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade
18.
Structure ; 19(2): 192-202, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21300288

RESUMO

The virulence of Gram-positive bacteria is enhanced by toxins like the Streptococcus pyogenes ß-NAD(+) glycohydrolase known as SPN. SPN-producing strains of S. pyogenes additionally express the protein immunity factor for SPN (IFS), which forms an inhibitory complex with SPN. We have determined crystal structures of the SPN-IFS complex and IFS alone, revealing that SPN is structurally related to ADP-ribosyl transferases but lacks the canonical binding site for protein substrates. SPN is instead a highly efficient glycohydrolase with the potential to deplete cellular levels of ß-NAD(+). The protective effect of IFS involves an extensive interaction with the SPN active site that blocks access to ß-NAD(+). The conformation of IFS changes upon binding to SPN, with repacking of an extended C-terminal α helix into a compact shape. IFS is an attractive target for the development of novel bacteriocidal compounds functioning by blocking the bacterium's self-immunity to the SPN toxin.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , NAD+ Nucleosidase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Modelos Moleculares , Dados de Sequência Molecular , NAD/metabolismo , NAD+ Nucleosidase/genética , NAD+ Nucleosidase/imunologia , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade , Virulência
19.
Biochemistry ; 49(29): 6165-76, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20518483

RESUMO

Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a "jackknife model" in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.


Assuntos
DNA Ligases/química , DNA/química , Modelos Moleculares , Poli(ADP-Ribose) Polimerases/química , Dedos de Zinco , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , DNA Ligase Dependente de ATP , DNA Ligases/genética , Humanos , Dados de Sequência Molecular , Poli(ADP-Ribose) Polimerases/genética , Proteínas de Ligação a Poli-ADP-Ribose , Conformação Proteica , Espalhamento de Radiação , Proteínas de Xenopus
20.
Curr Opin Struct Biol ; 20(3): 283-94, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20439160

RESUMO

Changing macromolecular conformations and complexes are critical features of cellular networks, typified by DNA damage response pathways that are essential to life. These fluctuations enhance the specificity of macromolecular recognition and catalysis, and enable an integrated functioning of pathway components, ensuring efficiency while reducing off pathway reactions. Such dynamic complexes challenge classical detailed structural analyses, so their characterizations demand combining methods that provide detail with those that inform dynamics in solution. Small-angle X-ray scattering, electron microscopy, hydrogen-deuterium exchange and computation are complementing detailed structures from crystallography and NMR to provide comprehensive models for DNA damage searching, specificity, signaling, and repair. Here, we review new approaches and results on DNA damage responses that advance structural biology in the fourth dimension, connecting proteins to pathways.


Assuntos
Dano ao DNA , Reparo do DNA , DNA/química , DNA/metabolismo , Animais , DNA/biossíntese , DNA/genética , Replicação do DNA , Enzimas/metabolismo , Humanos , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...