Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 88(4): 2648-2654, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36752409

RESUMO

AIBN is a convenient electrophilic cyanation reagent for transforming ArLi into ArCN under mild conditions. The addition/fragmentation cascade is controlled by Li···N chelation in which AIBN nitrogens assist in the nearly barrierless fragmentation into the desired ArCN product. Acidic C-H bonds in the fragmented byproduct partially consume ArLi by protonation. Density functional theory calculations and isotopic labeling probe the mechanism and explain the switch to substituted hydrazones in reactions with BuLi.

2.
iScience ; 25(9): 105020, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36117986

RESUMO

A novel cyclobutane-containing diacid building block, CBDA-3, was synthesized from sorbic acid using clean, efficient [2 + 2] photocycloaddition. This photoreaction can be performed using commercially available germicidal lamps, which represent a form of ECO-UV. SC-XRD showed that the cyclobutane ring in CBDA-3 has a unique semi-rigid character, unlike more rigid aromatic rings or more flexible types of aliphatic rings. C=C bonds present in the structure of CBDA-3 provide opportunities for derivatization which could be used to alter the characteristics of polymers made from this monomer. Additionally, TGA and DSC analysis showed CBDA-3 to have excellent thermal stability. These characteristics make CBDA-3 a promising building block with the potential to be used as a sustainable alternative to traditional petroleum-derived diacids. Finally, a facile and reliable Fischer esterification of CBDA-3 was performed to tune its melting point and solubility for different applications and to demonstrate the applicability of this building block in polymer synthesis.

3.
Chem Sci ; 11(25): 6539-6555, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34094120

RESUMO

An intramolecular C(sp3)-H amidation proceeds in the presence of t-BuOK, molecular oxygen, and DMF. This transformation is initiated by the deprotonation of an acidic N-H bond and selective radical activation of a benzylic C-H bond towards hydrogen atom transfer (HAT). Cyclization of this radical-anion intermediate en route to a two-centered/three-electron (2c,3e) C-N bond removes electron density from nitrogen. As this electronegative element resists such an "oxidation", making nitrogen more electron rich is key to overcoming this problem. This work dramatically expands the range of N-anions that can participate in this process by using amides instead of anilines. The resulting 107-fold decrease in the N-component basicity (and nucleophilicity) doubles the activation barrier for C-N bond formation and makes this process nearly thermoneutral. Remarkably, this reaction also converts a weak reductant into a much stronger reductant. Such "reductant upconversion" allows mild oxidants like molecular oxygen to complete the first part of the cascade. In contrast, the second stage of NH/CH activation forms a highly stabilized radical-anion intermediate incapable of undergoing electron transfer to oxygen. Because the oxidation is unfavored, an alternative reaction path opens via coupling between the radical anion intermediate and either superoxide or hydroperoxide radical. The hydroperoxide intermediate transforms into the final hydroxyisoindoline products under basic conditions. The use of TEMPO as an additive was found to activate less reactive amides. The combination of experimental and computational data outlines a conceptually new mechanism for conversion of unprotected amides into hydroxyisoindolines proceeding as a sequence of C-H amidation and C-H oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA