Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6693): 279, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38635719

RESUMO

A pair of authors advocate scaling governance structures to better address planetary crises.

3.
Science ; 383(6678): 37, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38175902

RESUMO

A data scientist offers an optimistic reality check for the Anthropocene.

4.
Commun Biol ; 6(1): 1066, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857800

RESUMO

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.


Assuntos
Micorrizas , Retroalimentação , Simbiose , Plantas/microbiologia , Solo
5.
Science ; 380(6644): 463, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141356

RESUMO

A pair of historians dig into the deep ideological roots of our planetary predicament.

6.
Ecol Appl ; 33(5): e2860, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37093639

RESUMO

Intensive agricultural landscapes pose a challenge to wildlife managers, policymakers, and landowners hoping to increase the diversity of desired wildlife species, such as grassland birds, which require urgent conservation action. In intensive agricultural landscapes, like those of the Midwestern United States, most land area is privately owned and operated and managed primarily for production. Thus, conducting ecological research in intensive agricultural landscapes requires collaborative approaches aimed at farm owners and operators. Recent advances in acoustic data collection and high-resolution habitat mapping, including low-cost acoustic recorders and satellite remote sensing, may be well positioned to address this challenge by enabling expanded assessments and monitoring of wildlife populations and habitats across regions. This study examined fine-grained habitat characteristics and their relationship with avian biodiversity in intensive agricultural landscapes at 44 agricultural sites across the state of Iowa. Passive acoustic monitoring and manual identification of bird species allowed for measurement of vocalizing bird richness. High-resolution mapping of noncrop vegetation provided detailed information on small noncrop vegetation habitat complexes within row-crop agriculture. Measures of image texture provided characterizations of compositional heterogeneity within noncrop vegetation. General linear Poisson modeling demonstrated robust associations between noncrop vegetation and vocalizing bird richness, yet variation in grassland bird richness was not well predicted by noncrop vegetation. Noncrop vegetation texture demonstrated potential as a predictor of vocalizing bird richness, though not better than or when combined with noncrop vegetated area, indicating it may not be an independent measure of habitat quality. Passive acoustic monitoring resulted in useful data at 44 out of 60 originally selected sites, with some lost to failed recorders and/or collaboration issues. Challenges remain in detecting habitat characteristics that promote grassland birds in row crop landscapes. Working toward probabilistic research design across privately owned working landscapes and incorporating more detailed management practice information would improve the transferability of this approach to farmland management and policy.


Assuntos
Biodiversidade , Ecossistema , Animais , Agricultura , Animais Selvagens , Aves
7.
One Earth ; 5(7): 756-766, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35898653

RESUMO

Extreme events, such as those caused by climate change, economic or geopolitical shocks, and pest or disease epidemics, threaten global food security. The complexity of causation, as well as the myriad ways that an event, or a sequence of events, creates cascading and systemic impacts, poses significant challenges to food systems research and policy alike. To identify priority food security risks and research opportunities, we asked experts from a range of fields and geographies to describe key threats to global food security over the next two decades and to suggest key research questions and gaps on this topic. Here, we present a prioritization of threats to global food security from extreme events, as well as emerging research questions that highlight the conceptual and practical challenges that exist in designing, adopting, and governing resilient food systems. We hope that these findings help in directing research funding and resources toward food system transformations needed to help society tackle major food system risks and food insecurity under extreme events.

8.
Science ; 376(6595): 805, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35587982

RESUMO

An interdisciplinary interrogation of the Anthropocene misses the chance to probe broader and deeper.

9.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131937

RESUMO

Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits-"win-wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.


Assuntos
Agricultura , Conservação dos Recursos Naturais/métodos , Ecossistema , Humanos , Energia Renovável , Mudança Social
10.
Science ; 374(6571): 1061, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34822293

RESUMO

A bold reappraisal of human history upends long-held theories about early societies.

12.
Ecol Indic ; 127: 107785, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34345225

RESUMO

The challenges posed by climate and land use change are increasingly complex, with rising and accelerating impacts on the global environmental system. Novel environmental and ecosystem research needs to properly interpret system changes and derive management recommendations across scales. This largely depends on advances in the establishment of an internationally harmonised, long-term operating and representative infrastructure for environmental observation. This paper presents an analysis evaluating 743 formally accredited sites of the International Long-Term Ecological Research (ILTER) network in 47 countries with regard to their spatial distribution and related biogeographical and socio-ecological representativeness. "Representedness" values were computed from six global datasets. The analysis revealed a dense coverage of Northern temperate regions and anthropogenic zones most notably in the US, Europe and East Asia. Significant gaps are present in economically less developed and anthropogenically less impacted hot and barren regions like Northern and Central Africa and inner-continental parts of South America. These findings provide the arguments for our recommendations regarding the geographic expansion for the further development of the ILTER network.

13.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875599

RESUMO

Archaeological and paleoecological evidence shows that by 10,000 BCE, all human societies employed varying degrees of ecologically transformative land use practices, including burning, hunting, species propagation, domestication, cultivation, and others that have left long-term legacies across the terrestrial biosphere. Yet, a lingering paradigm among natural scientists, conservationists, and policymakers is that human transformation of terrestrial nature is mostly recent and inherently destructive. Here, we use the most up-to-date, spatially explicit global reconstruction of historical human populations and land use to show that this paradigm is likely wrong. Even 12,000 y ago, nearly three quarters of Earth's land was inhabited and therefore shaped by human societies, including more than 95% of temperate and 90% of tropical woodlands. Lands now characterized as "natural," "intact," and "wild" generally exhibit long histories of use, as do protected areas and Indigenous lands, and current global patterns of vertebrate species richness and key biodiversity areas are more strongly associated with past patterns of land use than with present ones in regional landscapes now characterized as natural. The current biodiversity crisis can seldom be explained by the loss of uninhabited wildlands, resulting instead from the appropriation, colonization, and intensifying use of the biodiverse cultural landscapes long shaped and sustained by prior societies. Recognizing this deep cultural connection with biodiversity will therefore be essential to resolve the crisis.


Assuntos
Agricultura/história , Biodiversidade , Conservação dos Recursos Naturais/história , Povos Indígenas/história , Natureza , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , História Medieval , Migração Humana , Humanos
14.
Nat Ecol Evol ; 5(2): 219-230, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398104

RESUMO

Technology is transforming societies worldwide. A major innovation is the emergence of robotics and autonomous systems (RAS), which have the potential to revolutionize cities for both people and nature. Nonetheless, the opportunities and challenges associated with RAS for urban ecosystems have yet to be considered systematically. Here, we report the findings of an online horizon scan involving 170 expert participants from 35 countries. We conclude that RAS are likely to transform land use, transport systems and human-nature interactions. The prioritized opportunities were primarily centred on the deployment of RAS for the monitoring and management of biodiversity and ecosystems. Fewer challenges were prioritized. Those that were emphasized concerns surrounding waste from unrecovered RAS, and the quality and interpretation of RAS-collected data. Although the future impacts of RAS for urban ecosystems are difficult to predict, examining potentially important developments early is essential if we are to avoid detrimental consequences but fully realize the benefits.


Assuntos
Biodiversidade , Ecossistema , Cidades , Previsões , Humanos
15.
Curr Biol ; 29(17): R831-R833, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505180

RESUMO

Human influences are reshaping plant communities around the world through both extinctions and species gains. New work relating biodiversity shifts to rapid changes in climate and land use highlights the need for new biogeographic frameworks to understand evolutionary change in the Anthropocene.


Assuntos
Biodiversidade , Mudança Climática , Evolução Biológica , Humanos , Plantas
16.
Science ; 364(6447): 1226-1228, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31249042
18.
Sustain Sci ; 13(1): 119-128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147774

RESUMO

To what degree is cultural multi-level selection responsible for the rise of environmentally transformative human behaviors? And vice versa? From the clearing of vegetation using fire to the emergence of agriculture and beyond, human societies have increasingly sustained themselves through practices that enhance environmental productivity through ecosystem engineering. At the same time, human societies have increased in scale and complexity from mobile bands of hunter-gatherers to telecoupled world systems. We propose that these long-term changes are coupled through positive feedbacks among social and environmental changes, coevolved primarily through selection acting at the group level and above, and that this can be tested by combining archeological evidence with mechanistic experiments using an agent-based virtual laboratory (ABVL) approach. A more robust understanding of whether and how cultural multi-level selection couples human social change with environmental transformation may help in addressing the long-term sustainability challenges of the Anthropocene.

19.
Nat Ecol Evol ; 2(5): 819-826, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29610472

RESUMO

To understand ecological phenomena, it is necessary to observe their behaviour across multiple spatial and temporal scales. Since this need was first highlighted in the 1980s, technology has opened previously inaccessible scales to observation. To help to determine whether there have been corresponding changes in the scales observed by modern ecologists, we analysed the resolution, extent, interval and duration of observations (excluding experiments) in 348 studies that have been published between 2004 and 2014. We found that observational scales were generally narrow, because ecologists still primarily use conventional field techniques. In the spatial domain, most observations had resolutions ≤1 m2 and extents ≤10,000 ha. In the temporal domain, most observations were either unreplicated or infrequently repeated (>1 month interval) and ≤1 year in duration. Compared with studies conducted before 2004, observational durations and resolutions appear largely unchanged, but intervals have become finer and extents larger. We also found a large gulf between the scales at which phenomena are actually observed and the scales those observations ostensibly represent, raising concerns about observational comprehensiveness. Furthermore, most studies did not clearly report scale, suggesting that it remains a minor concern. Ecologists can better understand the scales represented by observations by incorporating autocorrelation measures, while journals can promote attentiveness to scale by implementing scale-reporting standards.


Assuntos
Ecologia/métodos , Análise Espaço-Temporal , Análise Espacial , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...