Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
ACS Appl Energy Mater ; 7(6): 2101-2108, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38550299

RESUMO

One of the main challenges to expand the use of titanium dioxide (titania) as a photocatalyst is related to its large band gap energy and the lack of an atomic scale description of the reduction mechanisms that may tailor the photocatalytic properties. We show that rutile TiO2 single crystals annealed in the presence of atomic hydrogen experience a strong reduction and structural rearrangement, yielding a material that exhibits enhanced light absorption, which extends from the ultraviolet to the near-infrared (NIR) spectral range, and improved photoelectrocatalytic performance. We demonstrate that both magnitudes behave oppositely: heavy/mild plasma reduction treatments lead to large/negligible spectral absorption changes and poor/enhanced (×10) photoelectrocatalytic performance, as judged from the higher photocurrent. To correlate the photoelectrochemical performance with the atomic and chemical structures of the hydrogen-reduced materials, we have modeled the process with in situ scanning tunneling microscopy measurements, which allow us to determine the initial stages of oxygen desorption and the desorption/diffusion of Ti atoms from the surface. This multiscale study opens a door toward improved materials for diverse applications such as more efficient rutile TiO2-based photoelectrocatalysts, green photothermal absorbers for solar energy applications, or NIR-sensing materials.

2.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904485

RESUMO

The combination of polyethylene terephthalate (PET), one of the most used polymers in the textile industry, with graphene, one of the most outstanding conductive materials in recent years, represents a promising strategy for the preparation of conductive textiles. This study focuses on the preparation of mechanically stable and conductive polymer textiles and describes the preparation of PET/graphene fibers by the dry-jet wet-spinning method from nanocomposite solutions in trifluoroacetic acid. Nanoindentation results show that the addition of a small amount of graphene (2 wt.%) to the glassy PET fibers produces a significant modulus and hardness enhancement (≈10%) that can be partly attributed to the intrinsic mechanical properties of graphene but also to the promotion of crystallinity. Higher graphene loadings up to 5 wt.% are found to produce additional mechanical improvements up to ≈20% that can be merely attributed to the superior properties of the filler. Moreover, the nanocomposite fibers display an electrical conductivity percolation threshold over 2 wt.% approaching ≈0.2 S/cm for the largest graphene loading. Finally, bending tests on the nanocomposite fibers show that the good electrical conductivity can be preserved under cyclic mechanical loading.

3.
Environ Res ; 221: 115254, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634890

RESUMO

Hazardous reactive dyes can cause serious environmental problems, as they are difficult to remove from water using conventional adsorbents due to their large molecular sizes and bulky structures. Sustainable mesoporous carbons derived from alginic acid demonstrated promising adsorbent capacity for several representative industrial bulky reactive dye molecules that account for almost 30% of the global textile dye market: Procion Yellow H-XEL (PY), Remazol Black (RB), Procion Crimson H-XEL (PC) and Procion Navy H-XEL (PN). These new adsorbents showed high mesoporosity (>90%) and large pore diameters (>20 nm) facilitating more straightforward and efficient adsorption and desorption processes when compared with predominately microporous activated carbon (AC), Norit, of similar surface chemistry, or with Silica gel (Sgel) that shows good mesoporosity but is hydrophilic. Their adsorption capacity was also significantly higher than that of both AC and Sgel, verifying suitability for bulky dye elimination from wastewater. Adsorption kinetic studies showed a best fit with the Elovich model, indicating a heterogeneous surface adsorption process. The adsorption isotherm data was best represented via the Toth model for almost all adsorbent/dye systems (R2 ≥ 0.98), validating the results of the Elovich model whereby the adsorbent is structurally heterogenous with multilayer dye coverage. From thermodynamic analysis, the derived parameters of ΔG (-11.6 âˆ¼ -6.2 kJ/mol), ΔH and ΔS demonstrate a spontaneous, enthalpy controlled adsorption process that was exothermic for RB (-10.0 kJ/mol) and PC (-23.9 kJ/mol) and endothermic for PY (3.9 kJ/mol) and PN (13.2 kJ/mol). Overall these alginic acid based mesoporous carbons are cost-effective, sustainable and efficient alternatives to current predominantly microporous adsorbent systems.


Assuntos
Corantes , Poluentes Químicos da Água , Corantes/química , Água/química , Adsorção , Cinética , Ácido Algínico , Termodinâmica , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
4.
Polymers (Basel) ; 14(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36015659

RESUMO

With a view to the development of new sustainable and functional adhesives, two Diels-Alder (DA) adducts are incorporated as a third component into the curing process of solvent-based and solvent-free polyurethanes in this study. The influence of the nature and content of the DA molecules on the retro-DA (rDA) reaction and its reversibility and cyclability is investigated. It is demonstrated that the bonding/debonding properties of the adhesives are mainly controlled by the concentration of the DA adducts, with a minimum thermoreversible bond (TB) content required that depends on the system and the total ratio between all the diols in the formulation. For the solvent-based system, rDA/DA reversibility can be repeated up to ~20 times without deterioration, in contrast to the solvent-free system where a gradual loss in the DA network reconstruction efficiency is observed. Despite this limitation, the solvent-free system presents clear advantages from an environmental point of view. The changes observed in the physical properties of these new thermoreversible adhesives are of great relevance for recycling strategies and, in particular, their potential for separating multilayered film packaging materials in order to recycle the individual polymer films involved.

5.
Nat Commun ; 12(1): 5937, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642345

RESUMO

Development of sustainable processes for hydrocarbons synthesis is a fundamental challenge in chemistry since these are of unquestionable importance for the production of many essential synthetic chemicals, materials and carbon-based fuels. Current industrial processes rely on non-abundant metal catalysts, temperatures of hundreds of Celsius and pressures of tens of bars. We propose an alternative gas phase process under mild reaction conditions using only atomic carbon, molecular hydrogen and an inert carrier gas. We demonstrate that the presence of CH2 and H radicals leads to efficient C-C chain growth, producing micron-length fibres of unbranched alkanes with an average length distribution between C23-C33. Ab-initio calculations uncover a thermodynamically favourable methylene coupling process on the surface of carbonaceous nanoparticles, which is kinematically facilitated by a trap-and-release mechanism of the reactants and nanoparticles that is confirmed by a steady incompressible flow simulation. This work could lead to future alternative sustainable synthetic routes to critical alkane-based chemicals or fuels.

6.
Polymers (Basel) ; 13(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801632

RESUMO

Polymer gel electrolytes (PGEs) have been prepared with copolymers based on imidazolium ionic liquids and the deep eutectic mixture of AlCl3:urea (uralumina) as liquid electrolyte. The copolymers were synthesized by photopolymerization of vinylpirrolidone or methylmethacrylate with imidazolium bis (trifluoromethane sulfonyl) imide (TFSI) ionic liquid monomer and mixed in an increasing range of wt.% with uralumina. The rheology and electrochemical activity of PGEs were highly dependent on the molar ratio of charged groups and copolymer content. Structure of the PGEs was studied by FTIR and Raman spectroscopy and a correlation between interactions polymer/uralumina and changes in speciation of uralumina was established. Despite the low molecular weight of the copolymers, the resulting polymer electrolytes develop elastomeric character associated with the binding ionic species. Although there is room to improve the electrochemical activity, in this study these new gels provide sufficient electroactivity to make them feasible alternatives as electrolytes in secondary aluminum batteries.

7.
Rev Sci Instrum ; 91(12): 124101, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379937

RESUMO

Laboratory astrochemistry aims at simulating, in the laboratory, some of the chemical and physical processes that operate in different regions of the universe. Amongst the diverse astrochemical problems that can be addressed in the laboratory, the evolution of cosmic dust grains in different regions of the interstellar medium (ISM) and its role in the formation of new chemical species through catalytic processes present significant interest. In particular, the dark clouds of the ISM dust grains are coated by icy mantles and it is thought that the ice-dust interaction plays a crucial role in the development of the chemical complexity observed in space. Here, we present a new ultra-high vacuum experimental station devoted to simulating the complex conditions of the coldest regions of the ISM. The INFRA-ICE machine can be operated as a standing alone setup or incorporated in a larger experimental station called Stardust, which is dedicated to simulate the formation of cosmic dust in evolved stars. As such, INFRA-ICE expands the capabilities of Stardust allowing the simulation of the complete journey of cosmic dust in space, from its formation in asymptotic giant branch stars to its processing and interaction with icy mantles in molecular clouds. To demonstrate some of the capabilities of INFRA-ICE, we present selected results on the ultraviolet photochemistry of undecane (C11H24) at 14 K. Aliphatics are part of the carbonaceous cosmic dust, and recently, aliphatics and short n-alkanes have been detected in situ in the comet 67P/Churyumov-Gerasimenko.

8.
Polymers (Basel) ; 12(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942610

RESUMO

The key to the preparation of polymer nanocomposites with new or improved properties resides in the homogeneous dispersion of the filler and in the efficient load transfer between components through strong filler/polymer interfacial interactions. This paper reports on the preparation of a series of nanocomposites of graphene and a polyolefin using different experimental approaches, with the final goal of obtaining multifunctional materials. A high-density polyethylene (HDPE) is employed as the matrix, while unmodified and chemically modified graphene fillers are used. By selecting the correct combination as well as the adequate preparation process, the nanocomposites display optimized thermal and mechanical properties, while also conferring good gas barrier properties and significant levels of electrical conductivity.

9.
Sci Rep ; 10(1): 14614, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884078

RESUMO

We employ chevron-like graphene nanoribbons (GNRs) synthesized by a solution-based chemical route to develop a novel electrochemical sensor for determination of the neurotransmitter epinephrine (EPI). The sensor surface, a glassy carbon electrode modified with GNRs, is characterized by atomic force microscopy, scanning electron microscopy and Raman spectroscopy, which show that the electrode surface modification comprises of bi-dimensional multilayer-stacked GNRs that retain their molecular structure. The charge transfer process occurring at the electrode interface is evaluated by electrochemical impedance spectroscopy. The sensor is applied to the determination of EPI, employing as an analytical signal the reduction peak corresponding to the epinephrinechrome-leucoepinephrinechrome transition (E = - 0.25 V) instead of the oxidation peak usually employed in the literature (E = + 0.6 V) in order to minimize interferences. The results obtained demonstrate that chevron-like nanoribbons synthesized by solution methods exhibit reliable electrocatalytic activity for EPI determination. Using differential pulse voltammetry, we obtain a linear concentration range from 6.4 × 10-6 to 1.0 × 10-4 M and a detection limit of 2.1 × 10-6 M. The applicability of the sensor was evaluated by determining EPI in pharmaceutical samples with satisfactory results.


Assuntos
Técnicas Eletroquímicas/métodos , Epinefrina/análise , Grafite/química , Nanotubos de Carbono/química , Análise Espectral/métodos
10.
Angew Chem Int Ed Engl ; 59(51): 23220-23227, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32761699

RESUMO

On-surface synthesis is emerging as a highly rational bottom-up methodology for the synthesis of molecular structures that are unattainable or complex to obtain by wet chemistry. Here, oligomers of meta-polyaniline, a known ferromagnetic polymer, were synthesized from para-aminophenol building-blocks via an unexpected and highly specific on-surface formal 1,4 Michael-type addition at the meta position, driven by the reduction of the aminophenol molecule. We rationalize this dehydrogenation and coupling reaction mechanism with a combination of in situ scanning tunneling and non-contact atomic force microscopies, high-resolution synchrotron-based X-ray photoemission spectroscopy and first-principles calculations. This study demonstrates the capability of surfaces to selectively modify local molecular conditions to redirect well-established synthetic routes, such as Michael coupling, towards the rational synthesis of new covalent nanostructures.

11.
Nat Astron ; 4(1): 97-105, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31934643

RESUMO

Evolved stars are a foundry of chemical complexity, gas and dust that provides the building blocks of planets and life, and dust nucleation first occurs in their photosphere. Despite their importance, the circumstellar regions enveloping these stars remain hidden to many observations, thus dust formation processes are still poorly understood. Laboratory astrophysics provides complementary routes to unveil these chemical processes, but most experiments rely on combustion or plasma decomposition of molecular precursors under physical conditions far removed from those in space. We have built an ultra-high vacuum machine combining atomic gas aggregation with advanced in-situ characterization techniques to reproduce and characterize the bottom-up dust formation process. We show that carbonaceous dust analogues formed from low-pressure gas-phase condensation of C atoms in a hydrogen atmosphere, in a C/H2 ratio similar to that reported for evolved stars, leads to the formation of amorphous C nanograins and aliphatic C-clusters. Aromatic species or fullerenes do not form effectively under these conditions, raising implications for the revision of the chemical mechanisms taking place in circumstellar envelopes.

12.
ACS Omega ; 4(2): 3287-3297, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31008418

RESUMO

Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the pristine layer. This work demonstrates that highly controlled, ultrahigh vacuum covalent chemical functionalization of graphene sheets with a thiol-terminated molecule provides a robust and tunable platform for the development of hybrid nanostructures in different environments. We employ this facile strategy to covalently couple two representative systems of broad interest: metal nanoparticles, via S-metal bonds, and thiol-modified DNA aptamers, via disulfide bridges. Both systems, which have been characterized by a multitechnique approach, remain firmly anchored to the graphene surface even after several washing cycles. Atomic force microscopy images demonstrate that the conjugated aptamer retains the functionality required to recognize a target protein. This methodology opens a new route to the integration of high-quality graphene layers into diverse technological platforms, including plasmonics, optoelectronics, or biosensing. With respect to the latter, the viability of a thiol-functionalized chemical vapor deposition graphene-based solution-gated field-effect transistor array was assessed.

13.
Carbon N Y ; 129: 837-846, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30190626

RESUMO

While high-quality defect-free epitaxial graphene can be efficiently grown on metal substrates, strong interaction with the supporting metal quenches its outstanding properties. Thus, protocols to transfer graphene to insulating substrates are obligatory, and these often severely impair graphene properties by the introduction of structural or chemical defects. Here we describe a simple and easily scalable general methodology to structurally and electronically decouple epitaxial graphene from Pt(111) and Ir(111) metal surfaces. A multi-technique characterization combined with ab-initio calculations was employed to fully explain the different steps involved in the process. It was shown that, after a controlled electrochemical oxidation process, a single-atom thick metal-hydroxide layer intercalates below graphene, decoupling it from the metal substrate. This decoupling process occurs without disrupting the morphology and electronic properties of graphene. The results suggest that suitably optimized electrochemical treatments may provide effective alternatives to current transfer protocols for graphene and other 2D materials on diverse metal surfaces.

14.
Angew Chem Int Ed Engl ; 57(28): 8582-8586, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29931817

RESUMO

On-surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on-surface chemistry route has now been used to synthesize the strong electron-acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para-aminophenol precursors. The mechanism is described using a combination of in situ surface characterization techniques and theoretical methods. Owing to a strong surface-molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends, inducing an intramolecular charge redistribution and leading to partial conjugation of the rings, conferring azo-character at the nitrogen sites.

15.
Anal Bioanal Chem ; 410(16): 3649-3660, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29671028

RESUMO

Therapeutic options for spinal cord injuries are severely limited; current treatments only offer symptomatic relief and rehabilitation focused on educating the individual on how to adapt to their new situation to make best possible use of their remaining function. Thus, new approaches are needed, and interest in the development of effective strategies to promote the repair of neural tracts in the central nervous system inspired us to prepare functional and highly anisotropic polymer scaffolds. In this work, an initial assessment of the behavior of rat neural progenitor cells (NPCs) seeded on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber scaffolds using synchrotron-based infrared microspectroscopy (SIRMS) is described. Combined with a modified touch imprint cytology sample preparation method, this application of SIRMS enabled the biochemical profiles of NPCs on the coated polymer fibers to be determined. The results showed that changes in the lipid and amide I-II spectral regions are modulated by the type and coating of the substrate used and the culture time. SIRMS studies can provide valuable insight into the early-stage response of NPCs to the morphology and surface chemistry of a biomaterial, and could therefore be a useful tool in the preparation and optimization of cellular scaffolds. Graphical abstract Synchrotron IR microspectroscopy can provide insight into the response of neural progenitor cells to synthetic scaffolds.


Assuntos
Ácido 3-Hidroxibutírico/química , Caproatos/química , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/citologia , Poliésteres/química , Alicerces Teciduais/química , Animais , Células Cultivadas , Nanofibras/química , Neurogênese , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
16.
Polymers (Basel) ; 10(2)2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30966202

RESUMO

Nanocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and tungsten disulfide inorganic nanotubes (INT-WS2) were prepared by blending in solution, and the effects of INT-WS2 on the isothermal crystallization behavior and kinetics of PHBV were investigated for the first time. The isothermal crystallization process was studied in detail using various techniques, with emphasis on the role of INT-WS2 concentration. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) showed that, in the nucleation-controlled regime, crystallization rates of PHBV in the nanocomposites are influenced by the INT-WS2 loading. Our results demonstrated that low loadings of INT-WS2 (0.1⁻1.0 wt %) increased the crystallization rates of PHBV, reducing the fold surface free energy by up to 24%. This is ascribed to the high nucleation efficiency of INT-WS2 on the crystallization of PHBV. These observations facilitate a deeper understanding of the structure-property relationships in PHBV biopolymer nanocomposites and are useful for their practical applications.

17.
Nanoscale ; 9(30): 10590-10595, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28726951

RESUMO

Efficient exfoliation of graphene and related materials (GRM) and fast and inexpensive integration/assembly are crucial to fulfil their full potential. A high degree of exfoliation in organic media can be achieved with high boiling point liquids that usually leave residues after drying, which is a handicap for many applications. Here, the effective exfoliation and dispersion of GRM in a vinyl monomer, which is subsequently converted to a functional polymer by photopolymerization, is reported. Nanocomposite membranes and three-dimensional objects are produced by the photo-curing process and stereolithography 3D printing, respectively.

18.
J Phys Chem B ; 121(11): 2454-2467, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28240903

RESUMO

Hemp seed (Cannabis sativa L.) oil comprises a variety of beneficial unsaturated triglycerides with well-documented nutritional and health benefits. However, it can become rancid over a relatively short time period, leading to increased industrial costs and waste of a valuable product. The development of sustainable polymers is presented as a strategy, where both the presence of unsaturation and peroxide content could be effectively used to alleviate both the waste and financial burden. After the reaction with peroxyacetic acid, the incorporation of halloysite nanotubes (HNTs), and the subsequent thermal curing, without the need for organic solvents or interfacial modifiers, flexible transparent materials with a low glass-transition temperature were developed. The improvement in the thermal stability and both the static and dynamic mechanical properties of the bionanocomposites were significantly enhanced with the well-dispersed HNT filler. At an optimum concentration of 0.5 wt % HNTs, a simultaneous increase in stiffness, strength, ductility, and toughness was observed in comparison to the unfilled cured resin. These sustainable food-waste-derived bionanocomposites may provide an interesting alternative to petroleum-based materials, particularly for low-load-bearing applications, such as packaging.


Assuntos
Silicatos de Alumínio/química , Cannabis/química , Nanocompostos/química , Nanotubos/química , Óleos de Plantas/química , Argila , Módulo de Elasticidade , Compostos de Epóxi/síntese química , Compostos de Epóxi/química , Calefação , Ligação de Hidrogênio , Oxirredução , Tamanho da Partícula , Óleos de Plantas/síntese química , Sementes/química , Temperatura , Resistência à Tração
19.
J Interpers Violence ; 32(21): 3346-3369, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-26303939

RESUMO

Using a mixed methodology, the present study compared men's and women's perceived benefits and emotional reactions with participating in research that inquired about child maltreatment and intimate partner violence (IPV) victimization and perpetration. Participants consisted of 703 college students (357 women, 346 men), ages 18 to 25 who reported on their childhood maltreatment, adolescent and adult IPV victimization and perpetration, and their reactions (perceived benefits and emotional effects) to participating. Participants' reactions to participating were assessed using quantitative scales, as well as open-ended written responses that were content coded by researchers. Women reported more personal benefits from research, whereas men and women reported similar levels of emotional reactions to research participation. Furthermore, greater frequencies of child maltreatment and IPV victimization were related to higher levels of emotional reactions. Common self-identified reasons for emotional reactions (e.g., not liking to think about abuse in general, personal victimization experiences) and benefits (e.g., reflection and awareness about oneself, learning about IPV) were also presented and analyzed. These data underscore the importance of future research that examines the behavioral impact of research participation utilizing longitudinal and in-depth qualitative methodologies. Findings also highlight the potential psychoeducational value of research on understanding the reasons underlying participants' benefits and emotional effects.


Assuntos
Maus-Tratos Infantis/psicologia , Vítimas de Crime/psicologia , Violência por Parceiro Íntimo/psicologia , Pesquisa , Estudantes/psicologia , Adolescente , Adulto , Bullying/psicologia , Bullying/estatística & dados numéricos , Criança , Maus-Tratos Infantis/estatística & dados numéricos , Vítimas de Crime/estatística & dados numéricos , Feminino , Humanos , Violência por Parceiro Íntimo/estatística & dados numéricos , Masculino , Fatores Sexuais , Estudantes/estatística & dados numéricos , Universidades , Adulto Jovem
20.
Polymers (Basel) ; 8(8)2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30974549

RESUMO

Development of epoxy or epoxy-based vinyl ester composites with improved mechanical and electromagnetic properties, filled with carbon-based nanomaterials, is of crucial interest for use in aerospace applications as radar absorbing materials at radio frequency. Numerous studies have highlighted the fact that the effective functional properties of this class of polymer composites are strongly dependent on the production process, which affects the dispersion of the nanofiller in the polymer matrix and the formation of micro-sized aggregations, degrading the final properties of the composite. The assessment of the presence of nanofiller aggregation in a composite through microscopy investigations is quite inefficient in the case of large scale applications, and in general provides local information about the aggregation state of the nanofiller rather than an effective representation of the degradation of the functional properties of the composite due to the presence of the aggregates. In this paper, we investigate the mechanical, electrical, and electromagnetic properties of thermosetting polymer composites filled with graphene nanoplatelets (GNPs). Moreover, we propose a novel approach based on measurements of the dielectric permittivity of the composite in the 8⁻12 GHz range in order to assess the presence of nanofiller aggregates and to estimate their average size and dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA