Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
J Virol Methods ; 328: 114953, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759872

RESUMO

Viruses in the families Dicistroviridae and Iflaviridae are among the main threats to western honey bees (Apis mellifera) and native bee species. Polymerase chain reaction (PCR) is the gold standard for pathogen detection in bees. However, high throughput screening for bee virus infections in singleplex PCR reactions is cumbersome and limited by the high quantities of sample RNA required. Thus, the development of a sensitive and specific multiplex PCR detection method for screening for multiple viruses simultaneously is necessary. Here, we report the development of a one-step multiplex reverse-transcription quantitative polymerase chain reaction (RT-qPCR) assay to detect four viruses commonly encountered in pollinator species. The optimized multiplex RT-qPCR protocol described in this study allows simultaneous detection of two dicistroviruses (Israeli acute paralysis virus and Black queen cell virus) and two iflaviruses (Sacbrood virus and Deformed wing virus) with high efficiency and specificity comparable to singleplex detection assays. This assay provides a broad range of detection and quantification, and the results of virus quantification in this study are similar to those performed in other studies using singleplex detection assays. This method will be particularly useful for data generation from small-bodied insect species that yield low amounts of RNA.

2.
Cell Rep Med ; : 101520, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38642550

RESUMO

Pathogenic variants in MYH7 and MYBPC3 account for the majority of hypertrophic cardiomyopathy (HCM). Targeted drugs like myosin ATPase inhibitors have not been evaluated in children. We generate patient and variant-corrected iPSC-cardiomyocytes (CMs) from pediatric HCM patients harboring single variants in MYH7 (V606M; R453C), MYBPC3 (G148R) or digenic variants (MYBPC3 P955fs, TNNI3 A157V). We also generate CMs harboring MYBPC3 mono- and biallelic variants using CRISPR editing of a healthy control. Compared with isogenic and healthy controls, variant-positive CMs show sarcomere disorganization, higher contractility, calcium transients, and ATPase activity. However, only MYH7 and biallelic MYBPC3 variant-positive CMs show stronger myosin-actin binding. Targeted myosin ATPase inhibitors show complete rescue of the phenotype in variant-positive CMs and in cardiac Biowires to mirror isogenic controls. The response is superior to verapamil or metoprolol. Myosin inhibitors can be effective in genotypically diverse HCM highlighting the need for myosin inhibitor drug trials in pediatric HCM.

3.
Mol Cell Neurosci ; 129: 103933, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663691

RESUMO

Astrocytes are in constant communication with neurons during the establishment and maturation of functional networks in the developing brain. Astrocytes release extracellular vesicles (EVs) containing microRNA (miRNA) cargo that regulates transcript stability in recipient cells. Astrocyte released factors are thought to be involved in neurodevelopmental disorders. Healthy astrocytes partially rescue Rett Syndrome (RTT) neuron function. EVs isolated from stem cell progeny also correct aspects of RTT. EVs cross the blood-brain barrier (BBB) and their cargo is found in peripheral blood which may allow non-invasive detection of EV cargo as biomarkers produced by healthy astrocytes. Here we characterize miRNA cargo and sequence motifs in healthy human astrocyte derived EVs (ADEVs). First, human induced Pluripotent Stem Cells (iPSC) were differentiated into Neural Progenitor Cells (NPCs) and subsequently into astrocytes using a rapid differentiation protocol. iPSC derived astrocytes expressed specific markers, displayed intracellular calcium transients and secreted ADEVs. miRNAs were identified by RNA-Seq on astrocytes and ADEVs and target gene pathway analysis detected brain and immune related terms. The miRNA profile was consistent with astrocyte identity, and included approximately 80 miRNAs found in astrocytes that were relatively depleted in ADEVs suggestive of passive loading. About 120 miRNAs were relatively enriched in ADEVs and motif analysis discovered binding sites for RNA binding proteins FUS, SRSF7 and CELF5. miR-483-5p was the most significantly enriched in ADEVs. This miRNA regulates MECP2 expression in neurons and has been found differentially expressed in blood samples from RTT patients. Our results identify potential miRNA biomarkers selectively sorted into ADEVs and implicate RNA binding protein sequence dependent mechanisms for miRNA cargo loading.

4.
Exp Appl Acarol ; 92(4): 795-808, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478141

RESUMO

Varroa destructor is a significant mite pest of western honey bees (Apis mellifera). Developing a method to rear and maintain populations of V. destructor in vitro would provide year-round access to the mites, allowing scientists to study their biology, behavior, and control more rapidly. In this study, we determined the impact of various rearing parameters on V. destructor survival and reproduction in vitro. This was done by collecting V. destructor from colonies, placing them in gelatin capsules containing honey bee larvae, and manipulating the following conditions experimentally: rearing temperature, colony source of honey bee larva, behavioral/developmental stages of V. destructor and honey bee larva, and mite:bee larva ratio. Varroa destructor survival was significantly impacted by temperature, colony source of larvae and mite behavioral stage. In addition, V. destructor reproduction was significantly impacted by mite: larva ratio, larval developmental stage, colony source of larva, and temperature. The following conditions optimized mite survival and reproduction in vitro: using a 4:1 mite:larva ratio, beginning the study with late stage uncapped larvae, using mites collected from adult bees, maintaining the rearing temperature at 34.5° C, and screening larval colony source. Ultimately, this research can be used to improve V. destructor in vitro rearing programs.


Assuntos
Larva , Varroidae , Animais , Varroidae/fisiologia , Abelhas/parasitologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Criação de Abelhas/métodos , Reprodução , Temperatura
5.
Abdom Radiol (NY) ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376575

RESUMO

PURPOSE: Gold-silica nanoshell therapy [AuroShells with subsequent focal laser therapy (AuroLase)] is an emerging targeted treatment modality for prostate cancer. We reviewed pre- and post-treatment unenhanced CT imaging to assess for retained gold-silica nanoshells in the abdomen and pelvis. METHODS: This single-institution retrospective study identified patients in the AuroLase pilot who underwent pre- and post-treatment unenhanced abdominopelvic CT. The attenuation, before and after gold-silica nanoshell administration, of the liver, spleen, pancreas, kidneys, prostate, blood pool, paraspinal musculature, and abnormal lymph nodes were manually measured by two readers. After inter-reader agreement was calculated using intraclass correlation (ICC), a permutation test was used to assess pre- and post-therapy attenuation differences. RESULTS: Four patients met the inclusion criteria. Mean age was 72.3 ± 5.9 years. Median time interval between pre-treatment CT and treatment, and between treatment and post-treatment CT, was 232 days and 236.5 days, respectively. The two readers' attenuation measurements had very high agreement (ICC = 0.99, p < 0.001). The highest differences in organ attenuation between pre- and post-therapy scans were seen in all four patients in the liver and spleen (liver increased by an average of 28.9 HU, p = 0.010; spleen increased by an average of 63.7 HU, p = 0.012). A single measured lymph node increased by an average of 58.9 HU. In the remainder of the measured sites, the change in attenuation from pre- to post-therapy scans ranged from -0.1 to 3.8 HU (p > 0.05). CONCLUSION: Increased attenuation of liver and spleen at CT can be an expected finding in patients who have received gold-silica nanoshell therapy.

6.
Stem Cell Res ; 76: 103344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364506

RESUMO

The identification of neurodevelopmental defects in a patient harboring a heterozygous de novo missense variant (NM_006561.4, c.1517G > A, p.Arg506His) within the CELF2 gene. Here, we describe the establishment of a patient-derived induced pluripotent stem cell (iPSC) line, alongside an isogenic gene-corrected iPSC line, achieved through CRISPR/Cas9 genome editing. These lines exhibit the expression of pluripotency markers, demonstrate differentiation potential into all three germ layers, and maintain a normal karyotype. These iPSC lines serve as valuable tools for investigating the consequences of CELF2 related neurodevelopmental disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Edição de Genes , Mutação de Sentido Incorreto , Diferenciação Celular , Sistemas CRISPR-Cas/genética , Proteínas CELF/genética , Proteínas CELF/metabolismo , Proteínas do Tecido Nervoso/metabolismo
7.
Biol Psychiatry Glob Open Sci ; 4(2): 100290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38420187

RESUMO

Background: Mutations in MECP2 predominantly cause Rett syndrome and can be modeled in vitro using human stem cell-derived neurons. Patients with Rett syndrome have signs of cortical hyperexcitability, such as seizures. Human stem cell-derived MECP2 null excitatory neurons have smaller soma size and reduced synaptic connectivity but are also hyperexcitable due to higher input resistance. Paradoxically, networks of MECP2 null neurons show a decrease in the frequency of network bursts consistent with a hypoconnectivity phenotype. Here, we examine this issue. Methods: We reanalyzed multielectrode array data from 3 isogenic MECP2 cell line pairs recorded over 6 weeks (n = 144). We used a custom burst detection algorithm to analyze network events and isolated a phenomenon that we termed reverberating super bursts (RSBs). To probe potential mechanisms of RSBs, we conducted pharmacological manipulations using bicuculline, EGTA-AM, and DMSO on 1 cell line (n = 34). Results: RSBs, often misidentified as single long-duration bursts, consisted of a large-amplitude initial burst followed by several high-frequency, low-amplitude minibursts. Our analysis revealed that MECP2 null networks exhibited increased frequency of RSBs, which produced increased bursts compared with isogenic controls. Bicuculline or DMSO treatment did not affect RSBs. EGTA-AM selectively eliminated RSBs and rescued network burst dynamics. Conclusions: During early development, MECP2 null neurons are hyperexcitable and produce hyperexcitable networks. This may predispose them to the emergence of hypersynchronic states that potentially translate into seizures. Network hyperexcitability depends on asynchronous neurotransmitter release that is likely driven by presynaptic Ca2+ and can be rescued by EGTA-AM to restore typical network dynamics.

8.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055944

RESUMO

Oxalic acid (OA) is a popular miticide used to control Varroa destructor (Mesostigmata: Varroidae) in western honey bee (Apis mellifera L.) (Hymenoptera: Apidae) colonies. Our aim was to investigate which method of OA application (dribbling, fogging, or vaporizing) was the most effective at reducing V. destructor infestations (Experiment 1) and to improve upon this method by determining the treatment interval that resulted in the greatest V. destructor control (Experiment 2). We used the product Api-Bioxal (97% OA) and maintained 40 honey bee colonies (10/treatment) in both experiments. In Experiment 1, the treatments included (i) dribbling 50 ml of 3% OA solution, (ii) vaporizing 4 g of solid OA, (iii) using an insect fogger supplied with 2.5% OA dissolved in ethyl alcohol, and (iv) an untreated control. After 3 weeks, only the vaporization method reduced V. destructor infestations (from 9.24 mites/100 bees pretreatment to 3.25 mites/100 bees posttreatment) and resulted in significantly increased brood amounts and numbers of adult bees over those of the controls. In Experiment 2, all colonies were treated with 4 applications of OA via vaporization at a constant concentration of 4 g OA/colony. In this experiment, the groups were separated by treatment intervals at either 3-, 5-, or 7-day intervals. We observed that 5- and 7-day treatment intervals significantly reduced V. destructor populations from pretreatment levels over that of the controls and 3-day intervals. Our data demonstrate the efficacy of OA in reducing V. destructor infestation, particularly vaporizing 4 g every 5-7 days as the most effective method of application.


Assuntos
Acaricidas , Himenópteros , Varroidae , Abelhas , Animais , Ácido Oxálico , Acaricidas/farmacologia , Volatilização
10.
Nat Metab ; 5(11): 1870-1886, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37946084

RESUMO

Tumors are intrinsically heterogeneous and it is well established that this directs their evolution, hinders their classification and frustrates therapy1-3. Consequently, spatially resolved omics-level analyses are gaining traction4-9. Despite considerable therapeutic interest, tumor metabolism has been lagging behind this development and there is a paucity of data regarding its spatial organization. To address this shortcoming, we set out to study the local metabolic effects of the oncogene c-MYC, a pleiotropic transcription factor that accumulates with tumor progression and influences metabolism10,11. Through correlative mass spectrometry imaging, we show that pantothenic acid (vitamin B5) associates with MYC-high areas within both human and murine mammary tumors, where its conversion to coenzyme A fuels Krebs cycle activity. Mechanistically, we show that this is accomplished by MYC-mediated upregulation of its multivitamin transporter SLC5A6. Notably, we show that SLC5A6 over-expression alone can induce increased cell growth and a shift toward biosynthesis, whereas conversely, dietary restriction of pantothenic acid leads to a reversal of many MYC-mediated metabolic changes and results in hampered tumor growth. Our work thus establishes the availability of vitamins and cofactors as a potential bottleneck in tumor progression, which can be exploited therapeutically. Overall, we show that a spatial understanding of local metabolism facilitates the identification of clinically relevant, tractable metabolic targets.


Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/metabolismo , Ácido Pantotênico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Vitaminas
11.
J Am Coll Radiol ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37516161

RESUMO

OBJECTIVE: To determine whether updated guidance by the ACR in 2017 advocating use of intravenous (IV) premedication in emergency department (ED) patients and inpatients with reported iodinated contrast allergy was associated with a change in clinical practice. METHODS: An anonymous survey was distributed via e-mail in October 2020 to practicing radiologist members of the ACR interrogating use of corticosteroid premedication for two clinical vignettes: an indicated routine (perform within 24 hours) inpatient contrast-enhanced CT (CE-CT) and an indicated urgent (perform within 6 hours) ED CE-CT. In both scenarios, the patient had a prior moderate hypersensitivity reaction to iodinated contrast media. Clinical management was evaluated. Data were compared to historical controls from 2009. RESULTS: The response rate was 11% (724 of 6,616). For the inpatient scenario, 72% (518 of 724) would use corticosteroid premedication with CE-CT, and 28% (200 of 724) would perform noncontrast CT. For the ED scenario, 67% (487 of 724) would use corticosteroid premedication with CE-CT, and 30% (217 of 724) would perform noncontrast CT. Oral premedication (85%, 439 of 518) was preferred for routine inpatients, and rapid IV premedication (89%, 433 of 487) was preferred for urgent ED patients. Of those who provided rapid IV dosing data in the ED, two doses of corticosteroids were used by 53% (216 of 410) and one dose was used by 45% (185 of 410), with academic radiologists more likely than private or hybrid practice radiologists to administer two doses (74% [74 of 100] versus 48% [151 of 312], P < .001, odds ratio, 3.03; 95% confidence interval, 1.84-5.00). Rapid IV premedication was more commonly used in 2020 than in 2009 (60% [433 of 724] versus 29% [20 of 69], P < .001, odds ratio, 3.65; 95% confidence interval, 2.12-6.26). Antihistamine use was common in both inpatient (93%, 480 of 518) and ED settings (92%, 447 of 487). Only 32% (229 of 721) of radiologists practiced in accordance with ACR guidelines, suggesting no need for routine premedication before CE-CT in patients with prior severe hypersensitivity reaction to gadolinium-based contrast media. Nonetheless, most (93%, 670 of 724) said the ACR Manual on Contrast Media was a major determinant of their practice. CONCLUSIONS: Use of rapid IV premedication in urgent settings has increased since 2009, following updated ACR guidelines, but there is disagreement over whether one or two corticosteroid doses is required. Despite reported high reliance on ACR guidelines, deviations from those guidelines remain common. In general, when ACR guidelines were not followed, it was in a risk-averse direction.

12.
Cell Genom ; 3(7): 100330, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37492106

RESUMO

High blood pressure (BP) is the major risk factor for cardiovascular disease. Genome-wide association studies have identified genetic variants for BP, but functional insights into causality and related molecular mechanisms lag behind. We functionally characterize 4,608 genetic variants in linkage with 135 BP loci in vascular smooth muscle cells and cardiomyocytes by massively parallel reporter assays. High densities of regulatory variants at BP loci (i.e., ULK4, MAP4, CFDP1, PDE5A) indicate that multiple variants drive genetic association. Regulatory variants are enriched in repeats, alter cardiovascular-related transcription factor motifs, and spatially converge with genes controlling specific cardiovascular pathways. Using heuristic scoring, we define likely causal variants, and CRISPR prime editing finally determines causal variants for KCNK9, SFXN2, and PCGF6, which are candidates for developing high BP. Our systems-level approach provides a catalog of functionally relevant variants and their genomic architecture in two trait-relevant cell lines for a better understanding of BP gene regulation.

13.
J Invertebr Pathol ; 200: 107973, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37479057

RESUMO

Pollinators have experienced significant declines in the past decade, in part due to emerging infectious diseases. Historically, studies have primarily focused on pathogens in the Western honey bee, Apis mellifera. However, recent work has demonstrated that these pathogens are shared by other pollinators and can negatively affect their health. Here, we surveyed honey bees and 15 native bee and wasp species for 13 pathogens traditionally associated with honey bees. The native bee and wasp species included 11 species not previously screened for pathogens. We found at least one honey bee-associated pathogen in 53% of native bee and wasp samples. The most widely distributed and commonly detected pathogens were the microsporidian Nosema ceranae, the bacterium Melissococcus plutonius, and the viruses deformed wing virus and black queen cell virus. The prevalence of viruses was generally higher in honey bees than in native bees and wasps. However, the prevalence of M. plutonius and the brood fungus Ascosphaera apis was significantly higher in some native bee species than in honey bees. The data also reveal novel trends in the association between co-occurring pathogens in honey bees and native bees and wasps at the pathogen community level. These results can inform the assessment of risks that native pollinator species face from pathogen stress, and indicate that many non-viral pathogens, notably M. plutonius and N. ceranae, are far more widely distributed and commonly found in native bees and wasps than previously thought.


Assuntos
Nosema , Vírus de RNA , Vírus , Vespas , Abelhas , Animais , Prevalência
14.
Vet Pathol ; 60(5): 709-713, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37313845

RESUMO

The amoeba Malpighamoeba mellificae is the etiologic agent of amoebic (amoeba) disease of Western honey bees (Apis mellifera). M. mellificae damages the Malpighian tubules, which is believed to weaken and kill the host bee. Here, the authors describe the detection of this organism in a honey bee colony in the Yukon Territory, Canada. The Malpighian tubules of 14% (7/50) of the adult worker bees were discolored dark brown. Fifteen bees screened using conventional polymerase chain reaction for the 18S gene of M. mellificae were positive for the pathogen. Histologically, the lumens of Malpighian tubules were packed with amoebae, causing dilation of the tubules and attenuation and loss of the tubular epithelium. This phylogenetic analysis places M. mellificae in a new clade, a sister group to the Entamoebidae. This work provides a foundation for further investigation into the distribution, prevalence, and pathology associated with M. mellificae infection.


Assuntos
Amoeba , Abelhas , Animais , Filogenia , Reação em Cadeia da Polimerase/veterinária , Canadá
15.
Development ; 150(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37381820

RESUMO

Cerebellar granule neurons (CGNs) are the most abundant neurons in the human brain. Dysregulation of their development underlies movement disorders and medulloblastomas. It is suspected that these disorders arise in progenitor states of the CGN lineage, for which human models are lacking. Here, we have differentiated human hindbrain neuroepithelial stem (hbNES) cells to CGNs in vitro using soluble growth factors, recapitulating key progenitor states in the lineage. We show that hbNES cells are not lineage committed and retain rhombomere 1 regional identity. Upon differentiation, hbNES cells transit through a rhombic lip (RL) progenitor state at day 7, demonstrating human specific sub-ventricular cell identities. This RL state is followed by an ATOH1+ CGN progenitor state at day 14. By the end of a 56-day differentiation procedure, we obtain functional neurons expressing CGN markers GABAARα6 and vGLUT2. We show that sonic hedgehog promotes GABAergic lineage specification and CGN progenitor proliferation. Our work presents a new model with which to study development and diseases of the CGN lineage in a human context.


Assuntos
Cerebelo , Proteínas Hedgehog , Humanos , Proteínas Hedgehog/metabolismo , Rombencéfalo/metabolismo , Diferenciação Celular/fisiologia , Neurogênese , Células-Tronco
16.
Nat Commun ; 14(1): 1896, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019888

RESUMO

Transcriptional changes in Rett syndrome (RTT) are assumed to directly correlate with steady-state mRNA levels, but limited evidence in mice suggests that changes in transcription can be compensated by post-transcriptional regulation. We measure transcription rate and mRNA half-life changes in RTT patient neurons using RATEseq, and re-interpret nuclear and whole-cell RNAseq from Mecp2 mice. Genes are dysregulated by changing transcription rate or half-life and are buffered when both change. We utilized classifier models to predict the direction of transcription rate changes and find that combined frequencies of three dinucleotides are better predictors than CA and CG. MicroRNA and RNA-binding Protein (RBP) motifs are enriched in 3'UTRs of genes with half-life changes. Nuclear RBP motifs are enriched on buffered genes with increased transcription rate. We identify post-transcriptional mechanisms in humans and mice that alter half-life or buffer transcription rate changes when a transcriptional modulator gene is mutated in a neurodevelopmental disorder.


Assuntos
Síndrome de Rett , Humanos , Camundongos , Animais , Síndrome de Rett/genética , RNA Mensageiro , Meia-Vida , Proteína 2 de Ligação a Metil-CpG/metabolismo , Regulação da Expressão Gênica
17.
Mol Biol Rep ; 50(6): 5185-5193, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119413

RESUMO

BACKGROUND: Breast cancer (BC) is the second leading cause of cancer-related mortality among women. Beyond the established tumourigenic role of genetic mutations, metabolic reprogramming is another key cancer hallmark. Glucose metabolism in particular is known to be prominently altered in tumours, in order to support biomass accumulation and cancer cell survival. The tumor suppressor microRNA (miRNA) miR-22 has been previously associated with a plethora of BC phenotypes such as growth, invasion-metastasis, and regulation of metabolic phenotypes such as lipid and folate metabolism. In this study, we aimed to investigate the role of miR-22 in the regulation of glucose metabolism in BC cells. METHODS AND RESULTS: Here we examined how miR-22 affects glucose metabolism in the MCF-7 BC cells. We found that over-expression of miR-22 caused a reduced glycolytic rate in these cells. Moreover, the miRNA also rendered MCF-7 cells more sensitive to lower glucose levels. We next unbiasedly screened the transcript levels of 84 genes relevant to glucose metabolism using the Human Glucose RT2 Profiler PCR Array. Interestingly, the strongest effect identified by this screen was the upregulation of genes involved in glycogen synthesis and the repression of gene involved in glycogen catabolism. Examination of publicly available transcriptomic datasets confirmed the correlations between expression of miR-22 and these glycogen metabolism genes in BC cells. CONCLUSION: This study has generated evidence for a regulatory role of miR-22 in glucose and glycogen metabolism, expanding the involvement of this miRNA in BC metabolic reprogramming.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Células MCF-7 , Proliferação de Células/genética , Glucose , Glicogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Movimento Celular/genética
18.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909614

RESUMO

The contribution of mRNA half-life is commonly overlooked when examining changes in mRNA abundance during development. mRNA levels of some genes are regulated by transcription rate only, but others may be regulated by mRNA half-life only shifts. Furthermore, transcriptional buffering is predicted when changes in transcription rates have compensating shifts in mRNA half-life resulting in no change to steady-state levels. Likewise, transcriptional boosting should result when changes in transcription rate are accompanied by amplifying half-life shifts. During neurodevelopment there is widespread 3'UTR lengthening that could be shaped by differential shifts in the stability of existing short or long 3'UTR transcript isoforms. We measured transcription rate and mRNA half-life changes during induced human Pluripotent Stem Cell (iPSC)-derived neuronal development using RATE-seq. During transitions to progenitor and neuron stages, transcriptional buffering occurred in up to 50%, and transcriptional boosting in up to 15%, of genes with changed transcription rates. The remaining changes occurred by transcription rate only or mRNA half-life only shifts. Average mRNA half-life decreased two-fold in neurons relative to iPSCs. Short gene isoforms were more destabilized in neurons and thereby increased the average 3'UTR length. Small RNA sequencing captured an increase in microRNA copy number per cell during neurodevelopment. We propose that mRNA destabilization and 3'UTR lengthening are driven in part by an increase in microRNA load in neurons. Our findings identify mRNA stability mechanisms in human neurodevelopment that regulate gene and isoform level abundance and provide a precedent for similar post-transcriptional regulatory events as other tissues develop.

19.
BMC Med Genomics ; 16(1): 5, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635662

RESUMO

BACKGROUND: The X-linked PTCHD1 locus is strongly associated with autism spectrum disorder (ASD). Males who carry chromosome microdeletions of PTCHD1 antisense long non-coding RNA (PTCHD1-AS)/DEAD-box helicase 53 (DDX53) have ASD, or a sub-clinical form called Broader Autism Phenotype. If the deletion extends beyond PTCHD1-AS/DDX53 to the next gene, PTCHD1, which is protein-coding, the individuals typically have ASD and intellectual disability (ID). Three male siblings with a 90 kb deletion that affects only PTCHD1-AS (and not including DDX53) have ASD. We performed a functional analysis of DDX53 to examine its role in NGN2 neurons. METHODS: We used the clustered regularly interspaced short palindromic repeats (CRISPR) gene editing strategy to knock out DDX53 protein by inserting 3 termination codons (3TCs) into two different induced pluripotent stem cell (iPSC) lines. DDX53 CRISPR-edited iPSCs were differentiated into cortical excitatory neurons by Neurogenin 2 (NGN-2) directed differentiation. The functional differences of DDX53-3TC neurons compared to isogenic control neurons with molecular and electrophysiological approaches were assessed. RESULTS: Isogenic iPSC-derived control neurons exhibited low levels of DDX53 transcripts. Transcriptional analysis revealed the generation of excitatory cortical neurons and DDX53 protein was not detected in iPSC-derived control neurons by western blot. Control lines and DDX53-3TC neurons were active in the multi-electrode array, but no overt electrophysiological phenotype in either isogenic line was observed. CONCLUSION: DDX53-3TC mutation does not alter NGN2 neuronal function in these experiments, suggesting that synaptic deficits causing ASD are unlikely in this cell type.


Assuntos
Transtorno do Espectro Autista , RNA Helicases DEAD-box , Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Transtorno do Espectro Autista/genética , RNA Helicases DEAD-box/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Neurônios/metabolismo
20.
Cell Rep ; 41(8): 111678, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417873

RESUMO

There are hundreds of risk genes associated with autism spectrum disorder (ASD), but signaling networks at the protein level remain unexplored. We use neuron-specific proximity-labeling proteomics (BioID2) to identify protein-protein interaction (PPI) networks for 41 ASD risk genes. Neuron-specific PPI networks, including synaptic transmission proteins, are disrupted by de novo missense variants. The PPI network map reveals convergent pathways, including mitochondrial/metabolic processes, Wnt signaling, and MAPK signaling. CRISPR knockout displays an association between mitochondrial activity and ASD risk genes. The PPI network shows an enrichment of 112 additional ASD risk genes and differentially expressed genes from postmortem ASD patients. Clustering of risk genes based on PPI networks identifies gene groups corresponding to clinical behavior score severity. Our data report that cell type-specific PPI networks can identify individual and convergent ASD signaling networks, provide a method to assess patient variants, and highlight biological insight into disease mechanisms and sub-cohorts of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Mapas de Interação de Proteínas/genética , Neurônios , Proteínas , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...