Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 124(43): 23597-23610, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33354274

RESUMO

Metal ion linked multilayers is a unique motif to spatially control and geometrically restrict molecules on a metal oxide surface and is of interest in a number of promising applications. Here we use a bilayer composed of a metal oxide surface, an anthracene annihilator molecule, Zn(II) linking ion, and porphyrin sensitizers to probe the influence of the position of the metal ion binding site on energy transfer, photon upconversion, and photocurrent generation. Despite being energetically similar, varying the position of the carboxy metal ion binding group (i.e. ortho, meta, para) of the Pt(II) tetraphenyl porphyrin sensitizer had a large impact on energy transfer rates and upconverted photocurrent that can be attributed to differences in their geometries. From polarized attenuated total reflectance measurements of the bilayers on ITO, we found that the orientation of the first layer (anthracene) was largely unperturbed by subsequent layers. However, the tilt angle of the porphyrin plane varies dramatically from 41° to 64° to 57° for the para-, meta-, and ortho-COOH substituted porphyrin molecules, which is likely responsible for the variation in energy transfer rates. We go on to show using molecular dynamics simulations that there is considerable flexibility in porphyrin orientation, indicating that an average structure is insufficient to predict the ensemble behavior. Instead, even a small subset of the population with highly favorable energy transfer rates can be the primary driver in increasing the likelihood of energy transfer. Gaining control of the orientation and its distribution will be a critical step in maximizing the potential of the metal ion linked structures.

2.
J Forensic Sci ; 63(5): 1479-1485, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29278649

RESUMO

The postmortem interval (PMI) of skeletal remains is a crucial piece of information that can help establish the time dimension in criminal cases. Unfortunately, the accurate and reliable determination of PMI from bone continues to evade forensic investigators despite concerted efforts over the past decades to develop suitable qualitative and quantitative methods. A relatively new PMI method based on the analysis of citrate content of bone was developed by Schwarcz et al. The main objective of our research was to determine whether this work could be externally validated. Thirty-one bone samples were obtained from the Forensic Anthropology Center, University of Tennessee, Knoxville, and the Onondaga County Medical Examiner's Office. Results from analyzing samples with PMI greater than 2 years suggest that the hypothetical relationship between the citrate content of bone and PMI is much weaker than reported. It was also observed that the average absolute error between the PMI value estimated using the equation proposed by Schwarcz et al. and the actual ("true") PMI of the sample was negative indicating an underestimation in PMI. These findings are identical to those reported by Kanz et al. Despite these results this method may still serve as a technique to sort ancient from more recent skeletal cases, after further, similar validation studies have been conducted.


Assuntos
Ácido Cítrico/análise , Ossos do Metatarso/química , Mudanças Depois da Morte , Costelas/química , Cromatografia Líquida de Alta Pressão , Antropologia Forense , Humanos , Reprodutibilidade dos Testes , Análise Espectral
4.
Inorg Chem ; 46(16): 6632-9, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-17625839

RESUMO

The amphiphilic gadolinium complex MS-325 ((trisodium-{(2-(R)-[(4,4-diphenylcyclohexyl) phosphonooxymethyl] diethylenetriaminepentaacetato) (aquo)gadolinium(III)}) is a contrast agent for magnetic resonance angiography (MRA). MS-325 consists of two slowly interconverting diastereoisomers, A and B (65:35 ratio), which can be isolated at pH > 8.5 (TyeklAr, Z.; Dunham, S. U.; Midelfort, K.; Scott, D. M.; Sajiki, H.; Ong, K.; Lauffer, R. B.; Caravan, P.; McMurry, T. J. Inorg. Chem. 2007, 46, 6621-6631). MS-325 binds to human serum albumin (HSA) in plasma resulting in an extended plasma half-life, retention of the agent within the blood compartment, and an increased relaxation rate of water protons in plasma. Under physiological conditions (37 degrees C, pH 7.4, phosphate buffered saline (PBS), 4.5% HSA, 0.05 mM complex), there is no statistical difference in HSA affinity or relaxivity between the two isomers (A 88.6 +/- 0.6% bound, r1 = 42.0 +/- 1.0 mM(-1) s(-1) at 20 MHz; B 90.2 +/- 0.6% bound, r1 = 38.3 +/- 1.0 mM(-1) s(-1) at 20 MHz; errors represent 1 standard deviation). At lower temperatures, isomer A has a higher relaxivity than isomer B. The water exchange rates in the absence of HSA at 298 K, kA298 = 5.9 +/- 2.8 x 10(6) s(-1), kB298 = 3.2 +/- 1.8 x 10(6) s(-1), and heats of activation, DeltaHA = 56 +/- 8 kJ/mol, DeltaHB = 59 +/- 11 kJ/mol, were determined by variable-temperature 17O NMR at 7.05 T. Proton nuclear magnetic relaxation dispersion (NMRD) profiles were recorded over the frequency range of 0.01-50 MHz at 5, 15, 25, and 35 degrees C in a 4.5% HSA in PBS solution for each isomer (0.1 mM). Differences in the relaxivity in HSA between the two isomers could be attributed to the differing water exchange rates.


Assuntos
Albuminas/química , Meios de Contraste/química , Gadolínio/química , Angiografia por Ressonância Magnética/instrumentação , Compostos Organometálicos/química , Água/química , Meios de Contraste/farmacologia , Relação Dose-Resposta a Droga , Cinética , Angiografia por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Modelos Químicos , Ligação Proteica , Prótons , Estereoisomerismo , Temperatura , Termodinâmica
5.
Inorg Chem ; 41(12): 3128-36, 2002 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-12054991

RESUMO

To examine how small structural changes influence the reactivity and magnetic properties of biologically relevant metal complexes, the reactivity and magnetic properties of two structurally related five-coordinate Fe(III) thiolate compounds are compared. (Et,Pr)-ligated [Fe(III)(S(2)(Me2)N(3)(Et,Pr))]PF(6) (3) is synthesized via the abstraction of a sulfur from alkyl persulfide ligated [Fe(III)(S(2)(Me2)N(3)(Et,Pr))-S(pers)]PF(6) (2) using PEt(3). (Et,Pr)-3 is structurally related to (Pr,Pr)-ligated [Fe(III)(S(2)(Me2)N(3)(Pr,Pr))]PF(6) (1), a nitrile hydratase model compound previously reported by our group, except it contains one fewer methylene unit in its ligand backbone. Removal of this methylene distorts the geometry, opens a S-Fe-N angle by approximately 10 degrees, alters the magnetic properties by stabilizing the S = 1/2 state relative to the S = 3/2 state, and increases reactivity. Reactivity differences between 3 and 1 were assessed by comparing the thermodynamics and kinetics of azide binding. Azide binds reversibly to both (Et,Pr)-3 and (Pr,Pr)-1 in MeOH solutions. The ambient temperature K(eq) describing the equilibrium between five-coordinate 1 or 3 and azide-bound 1-N(3) or 3-N(3) in MeOH is approximately 10 times larger for the (Et,Pr) system. In CH(2)Cl(2), azide binds approximately 3 times faster to 3 relative to 1, and in MeOH, azide dissociates 1 order of magnitude slower from 3-N(3) relative to 1-N(3). The increased on rates are most likely a consequence of the decreased structural rearrangement required to convert 3 to an approximately octahedral structure, or they reflect differences in the LUMO (vs SOMO) orbital population (i.e., spin-state differences). Dissociation rates from both 3-N(3) and 1-N(3) are much faster than one would expect for low-spin Fe(III). Most likely this is due to the labilizing effect of the thiolate sulfur that is trans to azide in these structures.


Assuntos
Azidas/química , Compostos Férricos/química , Compostos Férricos/síntese química , Modelos Moleculares , Algoritmos , Catálise , Cristalografia por Raios X , Eletroquímica , Hidroliases , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Temperatura
6.
Inorg Chem ; 35(11): 3254-3261, 1996 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-11666525

RESUMO

Imide transfer properties of ((THF)MgNPh)(6) (1) and the synthesis of the related species {(THF)MgN(1-naphthyl)}(6).2.25THF (2), via the reaction of dibutylmagnesium with H(2)N(1-naphthyl), in a THF/heptane mixture are described. Treatment of 1 with Ph(2)CO, 4-Me(2)NC(6)H(4)NO, t-BuNBr(2) (3), PCl(3), or MesPCl(2) (Mes = 2,4,6-Me(3)C(6)H(2)-) leads to the isolation of Ph(2)CNPh (4), 4-Me(2)NC(6)H(4)NNPh (5), t-BuNNPh (6), (PhNPCl)(2) (7), or (MesPNPh)(2) (8) in moderate yield. Reaction between 1 and GeCl(2).dioxane, SnCl(2), or PbCl(2) affords the M(4)N(4) (M = Ge, Sn, Pb) cubane imide derivative (GeNPh)(4) (9), [(SnNPh)(4).{MgCl(2)(THF)(4)}](infinity) (10), (SnNPh)(4).0.5PhMe (11), or (PbNPh)(4).0.5PhMe (12). Interaction of 1 with Ph(3)PO, (Me(2)N)(3)PO, or Ph(2)SO furnishes the complex (Ph(3)POMgNPh)(6) (13), {(Me(2)N)(3)POMgNPh}(6).2PhMe (14), or (Ph(2)SOMgNPh)(6) (15). The addition of 3 equiv of MgBr(2) to 1 gives 1.5 equiv of ((THF)Mg)(6)(NPh)(4)Br(4) (16) in quantitative yield, whereas treatment of 16 with 4 equiv of 1,4-dioxane is an alternative synthetic route to 1. Compounds 2, 3, 9, 10, and 14 were characterized by X-ray crystallography. The reactions demonstrate that 1 is a versatile and useful reagent for the synthesis of a variety of main group imides. Crystal data at 130 K with Mo Kalpha (lambda = 0.710 73 Å) radiation for 3 or Cu Kalpha (lambda = 1.541 78 Å) radiation for 2, 9, 10, and 14: 2, C(93)H(108)Mg(6)N(6)O(7.25), a = 28.101(7) Å, b = 35.851(7) Å, c = 36.816(7) Å, Z = 2, space group Fddd, R = 0.068 for 3500 (I > 2sigma(I)) data; 3, C(4)H(9)Br(2)N, a = 6.682(2) Å, b = 10.834(3) Å, c = 11.080(3) Å, alpha = 66.25(2) degrees, beta = 89.88(2) degrees, gamma = 82.53(2) degrees, Z = 4, space group P&onemacr;, R = 0.038 for 2043 (I > 2sigma(I)) data; 9, C(24)H(20)Ge(4)N(4), a = 10.749(2) Å, b = 12.358(3) Å, c = 35.818(7) Å, Z = 8, space group Pbca, R = 0.040 for 2981 (I > 2sigma(I)) data; 10, C(40)H(52)Cl(2)MgN(4)O(4)Sn(4), a = 12.770(3) Å, b = 13.554(3) Å, c = 25.839(5) Å, Z = 4, space group P2(1)2(1)2(1), R = 0.040 for (I > 2sigma(I)) data; 14, C(86)H(154)Mg(6)N(4)O(6)P(6), a = 22.478(4) Å, b = 16.339(3) Å, c = 29.387(6) Å, Z = 4, space group Pbcn, R = 0.081 for 4696 (I >2sigma(I)) data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...