Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Euro Surveill ; 29(2)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214080

RESUMO

BackgroundIn Sweden, information on seroprevalence of tick-borne encephalitis virus (TBEV) in the population, including vaccination coverage and infection, is scattered. This is largely due to the absence of a national tick-borne encephalitis (TBE) vaccination registry, scarcity of previous serological studies and use of serological methods not distinguishing between antibodies induced by vaccination and infection. Furthermore, the number of notified TBE cases in Sweden has continued to increase in recent years despite increased vaccination.AimThe aim was to estimate the TBEV seroprevalence in Sweden.MethodsIn 2018 and 2019, 2,700 serum samples from blood donors in nine Swedish regions were analysed using a serological method that can distinguish antibodies induced by vaccination from antibodies elicited by infection. The regions were chosen to reflect differences in notified TBE incidence.ResultsThe overall seroprevalence varied from 9.7% (95% confidence interval (CI): 6.6-13.6%) to 64.0% (95% CI: 58.3-69.4%) between regions. The proportion of vaccinated individuals ranged from 8.7% (95% CI: 5.8-12.6) to 57.0% (95% CI: 51.2-62.6) and of infected from 1.0% (95% CI: 0.2-3.0) to 7.0% (95% CI: 4.5-10.7). Thus, more than 160,000 and 1,600,000 individuals could have been infected by TBEV and vaccinated against TBE, respectively. The mean manifestation index was 3.1%.ConclusionA difference was observed between low- and high-incidence TBE regions, on the overall TBEV seroprevalence and when separated into vaccinated and infected individuals. The estimated incidence and manifestation index argue that a large proportion of TBEV infections are not diagnosed.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Infecções por Flavivirus , Humanos , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Suécia/epidemiologia , Cobertura Vacinal , Estudos Soroepidemiológicos , Vacinação , Anticorpos Antivirais
2.
Glycobiology ; 34(3)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38127648

RESUMO

Influenza A virus (IAV) pandemics result from interspecies transmission events within the avian reservoir and further into mammals including humans. Receptor incompatibility due to differently expressed glycan structures between species has been suggested to limit zoonotic IAV transmission from the wild bird reservoir as well as between different bird species. Using glycoproteomics, we have studied the repertoires of expressed glycan structures with focus on putative sialic acid-containing glycan receptors for IAV in mallard, chicken and tufted duck; three bird species with different roles in the zoonotic ecology of IAV. The methodology used pinpoints specific glycan structures to specific glycosylation sites of identified glycoproteins and was also used to successfully discriminate α2-3- from α2-6-linked terminal sialic acids by careful analysis of oxonium ions released from glycopeptides in tandem MS/MS (MS2), and MS/MS/MS (MS3). Our analysis clearly demonstrated that all three bird species can produce complex N-glycans including α2-3-linked sialyl Lewis structures, as well as both N- and O- glycans terminated with both α2-3- and α2-6-linked Neu5Ac. We also found the recently identified putative IAV receptor structures, Man-6P N-glycopeptides, in all tissues of the three bird species. Furthermore, we found many similarities in the repertoires of expressed receptors both between the bird species investigated and to previously published data from pigs and humans. Our findings of sialylated glycan structures, previously anticipated to be mammalian specific, in all three bird species may have major implications for our understanding of the role of receptor incompatibility in interspecies transmission of IAV.


Assuntos
Vírus da Influenza A , Humanos , Animais , Suínos , Vírus da Influenza A/metabolismo , Patos/metabolismo , Galinhas/metabolismo , Espectrometria de Massas em Tandem , Glicopeptídeos/metabolismo , Polissacarídeos/metabolismo , Mamíferos/metabolismo
3.
Microorganisms ; 11(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37894075

RESUMO

Monoclonal antibodies (mAbs) are an important treatment option for COVID-19 caused by SARS-CoV-2, especially in immunosuppressed patients. However, this treatment option can become ineffective due to mutations in the SARS-CoV-2 genome, mainly in the receptor binding domain (RBD) of the spike (S) protein. In the present study, 7950 SARS-CoV-2 positive samples from the Uppsala and Örebro regions of central Sweden, collected between March 2022 and May 2023, were whole-genome sequenced using amplicon-based sequencing methods on Oxford Nanopore GridION, Illumina MiSeq, Illumina HiSeq, or MGI DNBSEQ-G400 instruments. Pango lineages were determined and all single nucleotide polymorphism (SNP) mutations that occurred in these samples were identified. We found that the dominant sublineages changed over time, and mutations conferring resistance to currently available mAbs became common. Notable ones are R346T and K444T mutations in the RBD that confer significant resistance against tixagevimab and cilgavimab mAbs. Further, mutations conferring a high-fold resistance to bebtelovimab, such as the K444T and V445P mutations, were also observed in the samples. This study highlights that resistance mutations have over time rendered currently available mAbs ineffective against SARS-CoV-2 in most patients. Therefore, there is a need for continued surveillance of resistance mutations and the development of new mAbs that target more conserved regions of the RBD.

4.
Front Microbiol ; 14: 1205797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577431

RESUMO

Introduction: Lactobacilli may prevent broilers from colonization with Campylobacter spp. and other gram-negative zoonotic bacteria through lactic acid production and modulation of the intestinal microbiota. This study evaluated the effects of daily intake of Lactiplantibacillus plantarum 256 (LP256) on Campylobacter jejuni (C. jejuni) loads in ceca and feces of C. jejuni challenged broilers, together with the changes in the gut microbiota. Methods: Two experiments were conducted using the broilers Ross 308 (R-308; Experiment 1) for 42 days and Rowan Ranger broilers (RR; Experiment 2) for 63 days. The LP256 strain was administered either via silage inoculated with LP256 or direct supplementation in the drinking water. Concurrently, haylage as a forage similar to silage but without any inoculum was tested. C. jejuni loads in fecal matter and cecal content were determined by plate counts and qPCR, respectively. The cecal microbiota, in response to treatments and the challenge, were assessed by 16S rRNA sequencing. Results and Discussion: Culturing results displayed a significant reduction in C. jejuni colonization (2.01 log) in the silage treatment in comparison to the control at 1 dpi (day post-infection) in Experiment 1. However, no treatment effect on C. jejuni was observed at the end of the experiment. In Experiment 2, no treatment effects on C. jejuni colonization were found to be statistically significant. Colonization load comparison at the peak of infection (3 dpi) to that at the end of the trial (32 dpi) revealed a significant reduction in C. jejuni in all groups, regardless of treatment. Colonization dynamics of C. jejuni in the cecal samples analyzed by qPCR showed no difference between any of the treatments in Experiment 1 or 2. In both experiments, no treatment effects on the cecal microbiota were observed. However, proportional changes in the bacterial composition were observed after the C. jejuni challenge, suggesting that colonization affected the gut microbiota. Overall, the daily intake of LP256 was not effective in reducing C. jejuni colonization in either broiler type at the end of the rearing period and did not cause any significant changes in the birds' cecal microbiota composition.

5.
Microbiol Spectr ; 11(4): e0258622, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358408

RESUMO

Cross-species transmission of influenza A virus (IAV) from wild waterfowl to poultry is the first step in a chain of events that can ultimately lead to exposure and infection of humans. Herein, we study the outcome of infection with eight different mallard-origin IAV subtypes in two different avian hosts: tufted ducks and chickens. We found that infection and shedding patterns as well as innate immune responses were highly dependent on viral subtypes, host species, and inoculation routes. For example, intraoesophageal inoculation, commonly used in mallard infection experiments, resulted in no infections in contrast to oculonasal inoculation, suggesting a difference in transmission routes. Despite H9N2 being endemic in chickens, inoculation of mallard-origin H9N2 failed to cause viable infection beyond 1 day postinfection in our study design. The innate immune responses were markedly different in chickens and tufted ducks, and despite the presence of retinoic acid-inducible gene-I (RIG-I) in tufted duck transcriptomes, it was neither up nor downregulated in response to infection. Overall, we have revealed the heterogeneity of infection patterns and responses in two markedly different avian hosts following a challenge with mallard-origin IAV. These virus-host interactions provide new insights into important aspects of interspecies transmission of IAV. IMPORTANCE Our current findings highlight important aspects of IAV infection in birds that have implications for our understanding of its zoonotic ecology. In contrast to mallards where the intestinal tract is the main site of IAV replication, chickens and tufted ducks show limited or no signs of intestinal infection suggesting that the fecal-oral transmission route might not apply to all bird IAV host species. Our results indicate that mallard-origin IAVs undergo genetic changes upon introduction into new hosts, suggesting rapid adaptation to a new environment. However, similar to the mallard, chickens and tufted ducks show a limited immune response to infection with low pathogenic avian influenza viruses. These findings and future studies in different IAV hosts are important for our understanding of barriers to IAV transmission between species and ultimately from the wild reservoir to humans.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Humanos , Animais , Patos , Galinhas , Imunidade Inata
6.
J Gen Virol ; 104(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018118

RESUMO

The neuraminidase inhibitor (NAI) oseltamivir is stockpiled globally as part of influenza pandemic preparedness. However, oseltamivir carboxylate (OC) resistance develops in avian influenza virus (AIV) infecting mallards exposed to environmental-like OC concentrations, suggesting that environmental resistance is a real concern. Herein we used an in vivo model to investigate if avian influenza H1N1 with the OC-resistant mutation NA-H274Y (51833/H274Y) as compared to the wild-type (wt) strain (51833 /wt) could transmit from mallards, which would potentially be exposed to environmentally contaminated environments, to and between chickens, thus posing a potential zoonotic risk of antiviral-resistant AIV. Regardless of whether the virus had the OC-resistant mutation or not, chickens became infected both through experimental infection, and following exposure to infected mallards. We found similar infection patterns between 51833/wt and 51833/H274Y such that, one chicken inoculated with 51833/wt and three chickens inoculated with 51833/H274Y were AIV positive in oropharyngeal samples more than 2 days consecutively, indicating true infection, and one contact chicken exposed to infected mallards was AIV positive in faecal samples for 3 consecutive days (51833/wt) and another contact chicken for 4 consecutive days (51833/H274Y). Importantly, all positive samples from chickens infected with 51833/H274Y retained the NA-H274Y mutation. However, none of the virus strains established sustained transmission in chickens, likely due to insufficient adaptation to the chicken host. Our results demonstrate that an OC-resistant avian influenza virus can transmit from mallards and replicate in chickens. NA-H274Y does not constitute a barrier to interspecies transmission per se, as the resistant virus did not show reduced replicative capacity compared to the wild-type counterpart. Thus, responsible use of oseltamivir and surveillance for resistance development is warranted to limit the risk of an OC-resistant pandemic strain.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Humanos , Animais , Oseltamivir/farmacologia , Galinhas , Vírus da Influenza A Subtipo H1N1/genética , Antivirais/farmacologia , Vírus da Influenza A/genética , Patos , Neuraminidase/genética , Farmacorresistência Viral , Influenza Humana/tratamento farmacológico
7.
Sci Rep ; 13(1): 4476, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934147

RESUMO

Exchange of viral segments between one or more influenza virus subtypes can contribute to a shift in virulence and adaptation to new hosts. Among several influenza subtypes, H9N2 is widely circulating in poultry populations worldwide and has the ability to infect humans. Here, we studied the reassortant compatibility between chicken H9N2 with N1-N9 gene segments of wild bird origin, either with an intact or truncated stalk. Naturally occurring amino acid deletions in the NA stalk of the influenza virus can lead to increased virulence in both mallard ducks and chickens. Our findings show extended genetic compatibility between chicken H9Nx gene segments and the wild-bird NA with and without 20 amino acid stalk deletion. Replication kinetics in avian, mammalian and human cell lines revealed that parental chH9N2 and rH9N6 viruses with intact NA-stalk replicated significantly better in avian DF1 cells compared to human A549 cells. After introducing a stalk deletion, an enhanced preference for replication in mammalian and human cell lines could be observed for rH9N2Δ(H6), rH9N6Δ and rH9N9Δ compared to the parental chH9N2 virus. This highlights the potential emergence of novel viruses with variable phenotypic traits, warranting the continuous monitoring of H9N2 and co-circulating subtypes in avian hosts.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Aves Domésticas , Galinhas , Neuraminidase/genética , Neuraminidase/metabolismo , Animais Selvagens , Aminoácidos/metabolismo , Filogenia , Mamíferos
8.
Virol J ; 19(1): 164, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258215

RESUMO

BACKGROUND: Since the beginning of the COVID-19 pandemic, new variants of significance to public health have emerged. Consequently, early detection of new mutations and variants through whole-genome sequencing remains crucial to assist health officials in employing appropriate public health measures. METHODS: We utilized the ARTIC Network SARS-CoV-2 tiled amplicon approach and Nanopore sequencing to sequence 4,674 COVID-19 positive patient samples from Uppsala County, Sweden, between week 15 and 52 in 2021. Using this data, we mapped the circulating variants of concern (VOC) in the county over time and analysed the Spike (S) protein mutational dynamics in the Delta variant throughout 2021. RESULTS: The distribution of the SARS-CoV-2 VOC matched the national VOC distribution in Sweden, in 2021. In the S protein of the Delta variant, we detected mutations attributable to variants under monitoring and variants of interest (e.g., E484Q, Q613H, Q677H, A222V and Y145H) and future VOC (e.g., T95I and Y144 deletion, which are signature mutations in the Omicron variant). We also frequently detected some less well-described S protein mutations in our Delta sequences, that might play a role in shaping future emerging variants. These include A262S, Q675K, I850L, Q1201H, V1228L and M1237I. Lastly, we observed that some of the Delta variant's signature mutations were underrepresented in our study due to artifacts of the used bioinformatics tools, approach and sequencing method. We therefore discuss some pitfalls and considerations when sequencing SARS-CoV-2 genomes. CONCLUSION: Our results suggest that genomic surveillance in a small, representative cohort can be used to make predictions about the circulating variants nationally. Moreover, we show that detection of transient mutations in currently circulating variants can give valuable clues to signature mutations of future VOC. Here we suggest six such mutations, that we detected frequently in the Delta variant during 2021. Lastly, we report multiple systematic errors that occurred when following the ARTIC Network SARS-CoV-2 tiled amplicon approach using the V3 primers and Nanopore sequencing, which led to the masking of some of the important signature mutations in the Delta sequences.


Assuntos
COVID-19 , Sequenciamento por Nanoporos , Humanos , SARS-CoV-2/genética , Suécia/epidemiologia , Glicoproteína da Espícula de Coronavírus/genética , Genoma Viral , Pandemias , COVID-19/epidemiologia , Mutação
9.
BMC Bioinformatics ; 23(1): 239, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717145

RESUMO

BACKGROUND: This paper presents a new R/Bioconductor package, rprimer, for design of degenerate oligos and PCR assays for sequence variable viruses. A multiple DNA sequence alignment is used as input data, while the outputs consist of comprehensive tables (data frames) and dashboard-like plots. The workflow can be run directly from the R console or through a graphical user interface (Shiny application). Here, rprimer is demonstrated and evaluated by using it to design two norovirus genogroup I (GI) assays: one RT-qPCR assay for quantitative detection and one RT­PCR assay for Sanger sequencing and polymerase-capsid based genotyping. RESULTS: The assays generated were evaluated using stool samples testing positive for norovirus GI. The RT-qPCR assay accurately amplified and quantified all samples and showed comparable performance to a widely-used standardised assay, while the RT-PCR assay resulted in successful sequencing and genotyping of all samples. Merits and limitations of the package were identified through comparison with three similar freely available software packages. Several features were comparable across the different tools, but important advantages of rprimer were its speed, flexibility in oligo design and capacity for visualisation. CONCLUSIONS: An R/Bioconductor package, rprimer, was developed and shown to be successful in designing primers and probes for quantitative detection and genotyping of a sequence-variable virus. The package provides an efficient, flexible and visual approach to degenerate oligo design, and can therefore assist in virus research and method development.


Assuntos
Norovirus , Primers do DNA/genética , Norovirus/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Alinhamento de Sequência
10.
Viruses ; 14(5)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35632771

RESUMO

Since it was first discovered, the low pathogenic avian influenza (LPAI) H9N2 subtype has established linages infecting the poultry population globally and has become one of the most prevalent influenza subtypes in domestic poultry. Several different variants and genotypes of LPAI H9N2 viruses have been reported in Egypt, but little is known about their pathogenicity and how they have evolved. In this study, four different Egyptian LPAI H9N2 viruses were genetically and antigenically characterized and compared to representative H9N2 viruses from G1 lineage. Furthermore, the pathogenicity of three genetically distinct Egyptian LPAI H9N2 viruses was assessed by experimental infection in chickens. Whole-genome sequencing revealed that the H9N2 virus of the Egy-2 G1-B lineage (pigeon-like) has become the dominant circulating H9N2 genotype in Egypt since 2016. Considerable variation in virus shedding at day 7 post-infections was detected in infected chickens, but no significant difference in pathogenicity was found between the infected groups. The rapid spread and emergence of new genotypes of the influenza viruses pinpoint the importance of continuous surveillance for the detection of novel reassortant viruses, as well as monitoring the viral evolution.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Galinhas , Variação Genética , Vírus da Influenza A Subtipo H9N2/genética , Filogenia , Virulência
11.
Viruses ; 14(3)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35336908

RESUMO

We describe a flight-associated infection scenario of seven individuals with a B.1.617.2 (Delta) lineage, harbouring an S:E484Q point mutation. In Sweden, at least 10% of all positive SARS-CoV-2 samples were sequenced in each county; the B.1.717.2 + S:E484Q combination was not detected in Sweden before and was imported within the scenario described in this report. The high transmission rate of the delta lineage combined with the S:E484Q mutation, associated with immune escape in other lineages, makes this specific genetic combination a possible threat to the global fight against the COVID-19 pandemic. Even within the Omicron wave, the B.1.617.2 + S:E484Q variant appeared in community samples in Sweden, as it seems that this combination has an evolutionary gain compared to other B.1.617.2 lineages. The here described genomic combination was not detectable with the common fasta file-based Pango-lineage analysis, hence increasing the probability of the true global prevalence to be higher.


Assuntos
COVID-19 , Pandemias , COVID-19/epidemiologia , Humanos , Mutação Puntual , SARS-CoV-2/genética
12.
Elife ; 112022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35191377

RESUMO

Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter, there are species with divergent ecologies, from rarely isolated single-host specialists to multihost generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterizing these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analyzing recipient and donor population ancestry among genomes from 30 Campylobacter species, we show that cohabitation in the same host can lead to a six-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.


Assuntos
Anti-Infecciosos , Campylobacter , Animais , Bactérias/genética , Evolução Biológica , Campylobacter/genética , Transferência Genética Horizontal , Filogenia
13.
Pathogens ; 10(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34959585

RESUMO

Antibiotic resistance is a major challenge worldwide and increased resistance to quinolones in Campylobacter is being reported. Analysis of antibiotic resistance was performed on 157 Campylobacter strains (123 C. jejuni and 34 C. coli) from conventional and organic chickens produced in Sweden. Susceptibility for tetracycline, ciprofloxacin, erythromycin, nalidixic acid, streptomycin, and gentamycin was determined by microdilution. All 77 isolates from organic chickens were sensitive to all antibiotics, except two C. jejuni that were resistant to tetracycline. Of the 80 isolates from conventional chickens, 22.5% of C. jejuni and 11.1% of C. coli were resistant to quinolones and 5.6% of C. jejuni were resistant to tetracycline. Whole-genome sequencing resulted in 50 different sequence types of C. jejuni and six of C. coli. Nine sequence types were found in both organic and conventional chickens. Two of these (ST-19 and ST-257) included isolates from conventional broilers with different resistance phenotypes to the remaining isolates from conventional and organic broilers. There are management differences between the production systems, such as feed, breed, use of coccidiostats, and access to outdoor area. It is unlikely that quinolone resistance has arisen due to use of antimicrobials, since fluoroquinolones are not permitted in Swedish broiler production.

14.
Gigascience ; 10(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34927191

RESUMO

BACKGROUND: The tufted duck is a non-model organism that experiences high mortality in highly pathogenic avian influenza outbreaks. It belongs to the same bird family (Anatidae) as the mallard, one of the best-studied natural hosts of low-pathogenic avian influenza viruses. Studies in non-model bird species are crucial to disentangle the role of the host response in avian influenza virus infection in the natural reservoir. Such endeavour requires a high-quality genome assembly and transcriptome. FINDINGS: This study presents the first high-quality, chromosome-level reference genome assembly of the tufted duck using the Vertebrate Genomes Project pipeline. We sequenced RNA (complementary DNA) from brain, ileum, lung, ovary, spleen, and testis using Illumina short-read and Pacific Biosciences long-read sequencing platforms, which were used for annotation. We found 34 autosomes plus Z and W sex chromosomes in the curated genome assembly, with 99.6% of the sequence assigned to chromosomes. Functional annotation revealed 14,099 protein-coding genes that generate 111,934 transcripts, which implies a mean of 7.9 isoforms per gene. We also identified 246 small RNA families. CONCLUSIONS: This annotated genome contributes to continuing research into the host response in avian influenza virus infections in a natural reservoir. Our findings from a comparison between short-read and long-read reference transcriptomics contribute to a deeper understanding of these competing options. In this study, both technologies complemented each other. We expect this annotation to be a foundation for further comparative and evolutionary genomic studies, including many waterfowl relatives with differing susceptibilities to avian influenza viruses.


Assuntos
Patos , Influenza Aviária , Animais , Patos/genética , Feminino , Genoma , Genômica , Humanos , Influenza Aviária/epidemiologia , Influenza Aviária/genética , Masculino , Transcriptoma
15.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33361418

RESUMO

Dabbling and diving ducks partly occupy shared habitats but have been reported to play different roles in wildlife infectious disease dynamics. Influenza A virus (IAV) epidemiology in wild birds has been based primarily on surveillance programs focused on dabbling duck species, particularly mallard (Anas platyrhynchos). Surveillance in Eurasia has shown that in mallards, some subtypes are commonly (H1 to H7 and H10), intermediately (H8, H9, H11, and H12), or rarely (H13 to H16) detected, contributing to discussions on virus host range and reservoir competence. An alternative to surveillance in determining IAV host range is to study virus attachment as a determinant for infection. Here, we investigated the attachment patterns of all avian IAV subtypes (H1 to H16) to the respiratory and intestinal tracts of four dabbling duck species (Mareca and Anas spp.), two diving duck species (Aythya spp.), and chicken, as well as to a panel of 65 synthetic glycan structures. We found that IAV subtypes generally showed abundant attachment to colon of the Anas duck species, mallard, and Eurasian teal (Anas crecca), supporting the fecal-oral transmission route in these species. The reported glycan attachment profile did not explain the virus attachment patterns to tissues but showed significant attachment of duck-originated viruses to fucosylated glycan structures and H7 virus tropism for Neu5Gc-LN. Our results suggest that Anas ducks play an important role in the ecology and epidemiology of IAV. Further knowledge on virus tissue attachment, receptor distribution, and receptor binding specificity is necessary to understand the mechanisms underlying host range and epidemiology of IAV.IMPORTANCE Influenza A viruses (IAVs) circulate in wild birds worldwide. From wild birds, the viruses can cause outbreaks in poultry and sporadically and indirectly infect humans. A high IAV diversity has been found in mallards (Anas platyrhynchos), which are most often sampled as part of surveillance programs; meanwhile, little is known about the role of other duck species in IAV ecology and epidemiology. In this study, we investigated the attachment of all avian IAV hemagglutinin (HA) subtypes (H1 to H16) to tissues of six different duck species and chicken as an indicator of virus host range. We demonstrated that the observed virus attachment patterns partially explained reported field prevalence. This study demonstrates that dabbling ducks of the Anas genus are potential hosts for most IAV subtypes, including those infecting poultry. This knowledge is useful to target the sampling of wild birds in nature and to further study the interaction between IAVs and birds.


Assuntos
Patos/virologia , Vírus da Influenza A/fisiologia , Influenza Aviária/virologia , Animais , Galinhas/virologia , Colo/virologia , Patos/classificação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Especificidade de Hospedeiro , Vírus da Influenza A/classificação , Vírus da Influenza A/metabolismo , Influenza Aviária/transmissão , Polissacarídeos/química , Polissacarídeos/metabolismo , Sistema Respiratório/virologia , Tropismo Viral , Ligação Viral
16.
J Virol Methods ; 288: 114010, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33152410

RESUMO

Hepatitis A virus (HAV) is mainly transmitted via contaminated food or water or through person-to-person contact. Here, we describe development and evaluation of a reverse transcription droplet digital PCR (RT-ddPCR) and reverse transcription real-time PCR (RT-qPCR) assay for detection of HAV in food and clinical specimens. The assay was evaluated by assessing limit of detection, precision, matrix effects, sensitivity and quantitative agreement. The 95 % limit of detection (LOD95 %) was 10 % higher for RT-ddPCR than for RT-qPCR. A Bayesian model was used to estimate precision on different target concentrations. From this, we found that RT-ddPCR had somewhat greater precision than RT-qPCR within runs and markedly greater precision between runs. By analysing serum from naturally infected persons and a naturally contaminated food sample, we found that the two methods agreed well in quantification and had comparable sensitivities. Tests with artificially contaminated food samples revealed that neither RT-ddPCR nor RT-qPCR was severely inhibited by presence of oysters, raspberries, blueberries or leafy-green vegetables. For this assay, we conclude that RT-qPCR should be considered if rapid, qualitative detection is the main interest and that RT-ddPCR should be considered if precise quantification is the main interest. The high precision of RT-ddPCR allows for detection of small changes in viral concentration over time, which has direct implications for both food control and clinical studies.


Assuntos
Vírus da Hepatite A , Teorema de Bayes , Vírus da Hepatite A/genética , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Reversa
18.
PLoS Pathog ; 16(8): e1008759, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745135

RESUMO

Ticks (order: Ixodida) are a highly diverse and ecologically important group of ectoparasitic blood-feeding organisms. One such species, the seabird tick (Ixodes uriae), is widely distributed around the circumpolar regions of the northern and southern hemispheres. It has been suggested that Ix. uriae spread from the southern to the northern circumpolar region millions of years ago and has remained isolated in these regions ever since. Such a profound biographic subdivision provides a unique opportunity to determine whether viruses associated with ticks exhibit the same evolutionary patterns as their hosts. To test this, we collected Ix. uriae specimens near a Gentoo penguin (Pygoscelis papua) colony at Neko harbour, Antarctica, and from migratory birds-the Razorbill (Alca torda) and the Common murre (Uria aalge)-on Bonden island, northern Sweden. Through meta-transcriptomic next-generation sequencing we identified 16 RNA viruses, seven of which were novel. Notably, we detected the same species, Ronne virus, and two closely related species, Bonden virus and Piguzov virus, in both hemispheres indicating that there have been at least two cross-circumpolar dispersal events. Similarly, we identified viruses discovered previously in other locations several decades ago, including Gadgets Gully virus, Taggert virus and Okhotskiy virus. By identifying the same or closely related viruses in geographically disjunct sampling locations we provide evidence for virus dispersal within and between the circumpolar regions. In marked contrast, our phylogenetic analysis revealed no movement of the Ix. uriae tick hosts between the same locations. Combined, these data suggest that migratory birds are responsible for the movement of viruses at both local and global scales.


Assuntos
Doenças das Aves/epidemiologia , Aves/parasitologia , Interações Hospedeiro-Parasita , Ixodes/fisiologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/classificação , Infestações por Carrapato/veterinária , Animais , Doenças das Aves/parasitologia , Filogenia , Infecções por Vírus de RNA/genética , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia
19.
Microbes Infect ; 22(8): 356-359, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32135200

RESUMO

A psittacosis epidemic linked to fulmar hunting occurred on the Faroe Islands in the 1930s. This study investigates a plausible explanation to the 20% human mortality in this outbreak. Phylogenetic analysis showed that Chlamydia psittaci isolated from fulmars were closely related to the highly virulent 6BC strains from psittacines and are compatible with an acquisition by fulmars of an ancestor of the 6BC clade in the 1930s. This supports the hypothesis that the outbreak on the Faroe Islands started after naïve fulmars acquired C. psittaci from infected dead parrots thrown overboard when shipped to Europe in the 1930s.


Assuntos
Doenças das Aves/microbiologia , Chlamydophila psittaci/isolamento & purificação , Psitacose/veterinária , Animais , Doenças das Aves/epidemiologia , Aves , Chlamydophila psittaci/classificação , Chlamydophila psittaci/genética , DNA Bacteriano/genética , Dinamarca/epidemiologia , Epidemias , Humanos , Papagaios/microbiologia , Filogenia , Psitacose/epidemiologia , Psitacose/microbiologia , Zoonoses/epidemiologia , Zoonoses/microbiologia
20.
FEMS Microbiol Rev ; 43(6): 608-621, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31381759

RESUMO

Avian influenza viruses (AIVs) continue to impose a negative impact on animal and human health worldwide. In particular, the emergence of highly pathogenic AIV H5 and, more recently, the emergence of low pathogenic AIV H7N9 have led to enormous socioeconomical losses in the poultry industry and resulted in fatal human infections. While H5N1 remains infamous, the number of zoonotic infections with H7N9 has far surpassed those attributed to H5. Despite the clear public health concerns posed by AIV H7, it is unclear why specifically this virus subtype became endemic in poultry and emerged in humans. In this review, we bring together data on global patterns of H7 circulation, evolution and emergence in humans. Specifically, we discuss data from the wild bird reservoir, expansion and epidemiology in poultry, significant increase in their zoonotic potential since 2013 and genesis of highly pathogenic H7. In addition, we analysed available sequence data from an evolutionary perspective, demonstrating patterns of introductions into distinct geographic regions and reassortment dynamics. The integration of all aspects is crucial in the optimisation of surveillance efforts in wild birds, poultry and humans, and we emphasise the need for a One Health approach in controlling emerging viruses such as AIV H7.


Assuntos
Reservatórios de Doenças/veterinária , Monitoramento Epidemiológico/veterinária , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Saúde Única , Zoonoses/epidemiologia , Animais , Reservatórios de Doenças/virologia , Humanos , Influenza Aviária/transmissão , Influenza Humana/epidemiologia , Influenza Humana/etiologia , Filogenia , Aves Domésticas/microbiologia , Zoonoses/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...