Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(31): E6381-E6389, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716943

RESUMO

In experimental autoimmune encephalitis (EAE), autoimmune T cells are activated in the periphery before they home to the CNS. On their way, the T cells pass through a series of different cellular milieus where they receive signals that instruct them to invade their target tissues. These signals involve interaction with the surrounding stroma cells, in the presence or absence of autoantigens. To portray the serial signaling events, we studied a T-cell-mediated model of EAE combining in vivo two-photon microscopy with two different activation reporters, the FRET-based calcium biosensor Twitch1 and fluorescent NFAT. In vitro activated T cells first settle in secondary (2°) lymphatic tissues (e.g., the spleen) where, in the absence of autoantigen, they establish transient contacts with stroma cells as indicated by sporadic short-lived calcium spikes. The T cells then exit the spleen for the CNS where they first roll and crawl along the luminal surface of leptomeningeal vessels without showing calcium activity. Having crossed the blood-brain barrier, the T cells scan the leptomeningeal space for autoantigen-presenting cells (APCs). Sustained contacts result in long-lasting calcium activity and NFAT translocation, a measure of full T-cell activation. This process is sensitive to anti-MHC class II antibodies. Importantly, the capacity to activate T cells is not a general property of all leptomeningeal phagocytes, but varies between individual APCs. Our results identify distinct checkpoints of T-cell activation, controlling the capacity of myelin-specific T cells to invade and attack the CNS. These processes may be valuable therapeutic targets.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Sinalização do Cálcio/imunologia , Encefalomielite Autoimune Experimental/imunologia , Ativação Linfocitária/imunologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Linfócitos T/imunologia , Animais , Autoantígenos/imunologia , Autoimunidade/imunologia , Barreira Hematoencefálica/imunologia , Encéfalo/imunologia , Linhagem Celular , Feminino , Fatores de Transcrição NFATC/metabolismo , Ratos , Ratos Endogâmicos Lew , Migração Transendotelial e Transepitelial/imunologia
2.
J Immunol ; 198(8): 3081-3088, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28283566

RESUMO

The BAFF-APRIL system is best known for its control of B cell homeostasis, and it is a target of therapeutic intervention in autoimmune diseases and lymphoma. By analyzing the expression of the three receptors of this system, B cell maturation Ag (BCMA), transmembrane activator and CAML interactor, and BAFF receptor, in sorted human immune cell subsets, we found that BCMA was transcribed in plasmacytoid dendritic cells (pDCs) in both blood and lymphoid tissue. Circulating human pDCs contained BCMA protein without displaying it on the cell surface. After engagement of TLR7/8 or TLR9, BCMA was detected also on the cell surface of pDCs. The display of BCMA on the surface of human pDCs was accompanied by release of soluble BCMA (sBCMA); inhibition of γ-secretase enhanced surface expression of BCMA and reduced the release of sBCMA by pDCs. In contrast with human pDCs, murine pDCs did not express BCMA, not even after TLR9 activation. In this study, we extend the spectrum of BCMA expression to human pDCs. sBCMA derived from pDCs might determine local availability of its high-affinity ligand APRIL, because sBCMA has been shown to function as an APRIL-specific decoy. Further, therapeutic trials targeting BCMA in patients with multiple myeloma should consider possible effects on pDCs.


Assuntos
Antígeno de Maturação de Linfócitos B/imunologia , Células Dendríticas/imunologia , Transdução de Sinais/imunologia , Animais , Receptor do Fator Ativador de Células B/imunologia , Antígeno de Maturação de Linfócitos B/biossíntese , Separação Celular , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Camundongos , Reação em Cadeia da Polimerase
3.
Int J Oncol ; 49(1): 99-110, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27177126

RESUMO

Tumor side population (SP) cells display stem-like properties that can be modulated by treatment with the calcium channel blocker verapamil. Verapamil can enhance the cytotoxic effects of chemotherapeutic drugs and multidrug resistance by targeting the transport function of the P-glycoprotein (P-gp). This study focused on the therapeutic potential of verapamil on stem-like SP tumor cells, and further investigated its chemosensitizing effects using L3.6pl and AsPC-1 pancreatic carcinoma models. As compared to parental L3.6pl cells (0.9±0.22%), L3.6pl gemcitabine-resistant cells (L3.6plGres) showed a significantly higher percentage of SP cells (5.38±0.99%) as detected by Hoechst 33342/FACS assays. The L3.6plGres SP cells showed stable gemcitabine resistance, enhanced colony formation ability and increased tumorigenicity. Verapamil effectively inhibited L3.6plGres and AsPC-1 SP cell proliferation in vitro. A pro-apoptotic effect of verapamil was observed in L3.6pl cells, but not in L3.6plGres cells, which was linked to their differential expression of P-gp and equilibrative nucleoside transporter-1 (ENT-1). In an orthotopic pancreatic cancer mouse model, both low and high dose verapamil was shown to substantially reduce L3.6plGres-SP cell tumor growth and metastasis, enhance tumor apoptosis, and reduce microvascular density.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Resistencia a Medicamentos Antineoplásicos/genética , Transportador Equilibrativo 1 de Nucleosídeo/biossíntese , Neoplasias Pancreáticas/tratamento farmacológico , Verapamil/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células da Side Population/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Development ; 143(10): 1788-99, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27013243

RESUMO

The H3K9me3-specific histone methyltransferase Setdb1 impacts on transcriptional regulation by repressing both developmental genes and retrotransposons. How impaired retrotransposon silencing may lead to developmental phenotypes is currently unclear. Here, we show that loss of Setdb1 in pro-B cells completely abrogates B cell development. In pro-B cells, Setdb1 is dispensable for silencing of lineage-inappropriate developmental genes. Instead, we detect strong derepression of endogenous murine leukemia virus (MLV) copies. This activation coincides with an unusual change in chromatin structure, with only partial loss of H3K9me3 and unchanged DNA methylation, but strongly increased H3K4me3. Production of MLV proteins leads to activation of the unfolded protein response pathway and apoptosis. Thus, our data demonstrate that B cell development depends on the proper repression of retrotransposon sequences through Setdb1.


Assuntos
Apoptose/genética , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Retroelementos/genética , Resposta a Proteínas não Dobradas/genética , Animais , Perfilação da Expressão Gênica , Inativação Gênica , Células HEK293 , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Vírus da Leucemia Murina/genética , Lisina/metabolismo , Metilação , Camundongos , Sequências Repetitivas de Ácido Nucleico/genética , Transcrição Gênica
5.
EMBO Rep ; 16(7): 836-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26012739

RESUMO

More than 50% of mammalian genomes consist of retrotransposon sequences. Silencing of retrotransposons by heterochromatin is essential to ensure genomic stability and transcriptional integrity. Here, we identified a short sequence element in intracisternal A particle (IAP) retrotransposons that is sufficient to trigger heterochromatin formation. We used this sequence in a genome-wide shRNA screen and identified the chromatin remodeler Atrx as a novel regulator of IAP silencing. Atrx binds to IAP elements and is necessary for efficient heterochromatin formation. In addition, Atrx facilitates a robust and largely inaccessible heterochromatin structure as Atrx knockout cells display increased chromatin accessibility at retrotransposons and non-repetitive heterochromatic loci. In summary, we demonstrate a direct role of Atrx in the establishment and robust maintenance of heterochromatin.


Assuntos
DNA Helicases/genética , DNA Helicases/metabolismo , Genes de Partícula A Intracisternal , Heterocromatina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Montagem e Desmontagem da Cromatina , Instabilidade Genômica , Heterocromatina/genética , Interferência de RNA , RNA Interferente Pequeno , Proteína Nuclear Ligada ao X
6.
Target Oncol ; 10(4): 535-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25639539

RESUMO

Our preliminary studies identified a small population side population (SP) cells in pancreatic cancer cells with stem cell-like properties, which were able to induce fast and aggressive tumor formation in nude mice. Gene expression analysis showed a significant difference in the expression of more than 1,300 genes in SP cells, among which a highly significant difference in microRNA expression of miR-21 and miR-221 between SP and NSP cells was identified. SP cells were identified and characterized by flow cytometry using Hoechst 33342 dye staining from a highly metastatic human pancreatic cancer cell line (L3.6pl). Antagomir transfection was performed using miRNA-21 and miRNA-221 antisense oligonucleotides (ASOs) and followed by detection of cell apoptosis, cell cycle progression, chemosensitivity, and invasion. Sorted SP cells from gemcitabine-resistant L3.6pl cells (L3.6pl(Gres)-SP) cells were orthotopically implanted in nude mice with or without miRNA-21 and miRNA-221 ASOs mono- and combination therapy. The administration of antagomir-21 and antagomir-221 significantly reduced the SP cell fraction, decreased SP cell differentiation, and downstream gene regulation, and thereby induced reduction of L3.6pl cell proliferation, invasion, and chemoresistance against gemcitabine and 5-Fluorouracil. Combination of ASOs therapy against miRNA-21 and miRNA-221 significantly inhibited primary tumor growth and metastasis compared to single antagomir treatment, especially, in L3.6plGres-SP-induced pancreatic tumor growth in vivo. These findings further indicate that the inhibition of miR-21 and miR-221 appear particularly suitable to target stem-like subpopulations and address their specific biological function to promote tumor progression in pancreatic cancer.


Assuntos
MicroRNAs/antagonistas & inibidores , Células-Tronco Neoplásicas/fisiologia , Oligonucleotídeos Antissenso/administração & dosagem , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Animais , Carcinogênese/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Oligonucleotídeos Antissenso/genética , Neoplasias Pancreáticas/patologia , Transfecção , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Leukoc Biol ; 97(1): 111-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25387835

RESUMO

It is well established that CD4 and CD8 T cells are required for the initiation of autoimmune diabetes in NOD mice. However, different subsets of CD4 or CD8 cells may play different roles in the initiation of insulitis. In this study, we evaluated the role of the previously described CD8(+) CD122(+) in this process. We found that prediabetic NOD mice have an almost 50% reduction of CD8(+) CD122(+) T cells in their secondary lymphoid organs compared with BL/6 or Balb/c mouse strains. This reduction is explained by the lack of the regulatory CD8(+) CD122(+) PD-1(+) cell population in the NOD mice, as we found that all CD8(+) CD122(+) T cells from prediabetic NOD mice lack PD-1 expression and regulatory function. Depletion of CD8(+) CD122(+) PD-1(-) cells through injection of anti-CD122 mAb in prediabetic female NOD mice reduced the infiltration of mononuclear cells into the Langerhans islets and delayed the onset and decreased the incidence of overt diabetes. In addition, we found that transfer of highly purified and activated CD8(+) CD122(+) PD-1(-) cells, together with diabetogenic splenocytes from NOD donors to NOD SCID recipients, accelerates the diabetes development in these mice. Together, these results demonstrate that CD8(+) CD122(+) PD-1(-) T cells from NOD mice are effector cells that are involved in the pathogenesis of autoimmune diabetes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Estado Pré-Diabético/imunologia
8.
Target Oncol ; 10(2): 215-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24950733

RESUMO

Cancer stem cells (CSCs) have been proposed to underlie the initiation and maintenance of tumor growth and the development of chemoresistance in solid tumors. The identification and role of these important cells in pancreatic cancer remains controversial. Here, we isolate side population (SP) cells from the highly aggressive and metastatic human pancreatic cancer cell line L3.6pl and evaluate their potential role as models for CSCs. SP cells were isolated following Hoechst 33342 staining of L3.6pl cells. SP, non-SP, and unsorted L3.6pl cells were orthotopically xenografted into the pancreas of nude mice and tumor growth observed. RNA was analyzed by whole genome array and pathway mapping was performed. Drug resistant variants of L3.6pl were developed and examined for SP proportions and evaluated for surface expression of known CSC markers. A distinct SP with the ability to self-renew and differentiate into non-SP cells was isolated from L3.6pl (0.9 % ± 0.22). SP cells showed highly tumorigenic and metastatic characteristics after orthotopic injection. Transcriptomic analysis identified modulation of gene networks linked to tumorigenesis, differentiation, and metastasization in SP cells relative to non-SP cells. Wnt, NOTCH, and EGFR signaling pathways associated with tumor stem cells were altered in SP cells. When cultured with increasing concentrations of gemcitabine, the proportion of SP cells, ABCG2(+), and CD24(+) cells were significantly enriched, whereas 5-fluorouracil (5-FU) treatment lowered the percentage of SP cells. SP cells were distinct from cells positive for previously postulated pancreatic CSC markers. The Hoechst-induced side population in L3.6pl cells comprises a subset of tumor cells displaying aggressive growth and metastasization, increased gemcitabine-, but not 5-FU resistance. The cells may act as a partial model for CSC biology.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Células da Side Population/efeitos dos fármacos , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/secundário , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Separação Celular , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenótipo , Células da Side Population/metabolismo , Células da Side Population/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
9.
J Immunol ; 192(8): 3507-17, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24639353

RESUMO

Ag recognition via the TCR is necessary for the expansion of specific T cells that then contribute to adaptive immunity as effector and memory cells. Because CD4+ and CD8+ T cells differ in terms of their priming APCs and MHC ligands we compared their requirements of Ag persistence during their expansion phase side by side. Proliferation and effector differentiation of TCR transgenic and polyclonal mouse T cells were thus analyzed after transient and continuous TCR signals. Following equally strong stimulation, CD4+ T cell proliferation depended on prolonged Ag presence, whereas CD8+ T cells were able to divide and differentiate into effector cells despite discontinued Ag presentation. CD4+ T cell proliferation was neither affected by Th lineage or memory differentiation nor blocked by coinhibitory signals or missing inflammatory stimuli. Continued CD8+ T cell proliferation was truly independent of self-peptide/MHC-derived signals. The subset divergence was also illustrated by surprisingly broad transcriptional differences supporting a stronger propensity of CD8+ T cells to programmed expansion. These T cell data indicate an intrinsic difference between CD4+ and CD8+ T cells regarding the processing of TCR signals for proliferation. We also found that the presentation of a MHC class II-restricted peptide is more efficiently prolonged by dendritic cell activation in vivo than a class I bound one. In summary, our data demonstrate that CD4+ T cells require continuous stimulation for clonal expansion, whereas CD8+ T cells can divide following a much shorter TCR signal.


Assuntos
Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular , Análise por Conglomerados , Células Dendríticas/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Expressão Gênica , Perfilação da Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Antígenos H-2/química , Antígenos H-2/imunologia , Memória Imunológica , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
10.
Stem Cells Dev ; 23(2): 180-92, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24021093

RESUMO

Dye-effluxing side population (SP) cells can be resistant to chemotherapy and are thought to resemble cancer stem cells. We characterized the relevance of the SP subpopulation in esophageal cancer cell lines and their relation to chemotherapy resistance and metastasis. The SP subpopulation was detected using Hoechst 33342 staining in five esophageal cancer cell lines OE19, OE21, OE33, PT1590, and LN1590. CTx-resistant cell lines were developed after long-term exposure to 5-fluorouracil (5-FU) and cisplatin and validated by analysis of resistance markers, thymidylate synthase and ERCC1. While neither LN1590 nor PT1590 had detectable SP cells, OE19, OE21, and OE33 cells were found to contain varying levels of SP cells. With increasing duration of 5-FU or cisplatin therapy, the SP subpopulation substantially emerged in PT1590 and LN1590. OE19-SP cells displayed significant higher tumorigenicity than OE19- non-SP (NSP) cells after subcutaneous tumor cell injection in vivo. SP cells isolated from OE19 and OE19/5-FUres were subsequently analyzed by an epithelial-to-mesenchymal transition (EMT) polymerase chain reaction array. Interestingly, the SP fraction of OE19/5-FUres showed a dramatic upregulation of EMT-related genes compared to the SP fraction of OE19. Our results provide evidence that (1) the proportion of SP cells is different in esophageal cancer, (2) SP cells exhibit stem cell properties and are associated to chemotherapy resistance, and (3) long-term CTx selects for SP cells with an upregulated EMT gene profile, which might be the source of systemic disease relapse. Further investigations are necessary to ideally target these EMT-associated SP cells in esophageal cancer.


Assuntos
Carcinoma de Células Escamosas/patologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/patologia , Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/citologia , Células da Side Population/citologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Antimetabólitos/farmacologia , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Diferenciação Celular , Linhagem Celular Tumoral , Cisplatino/farmacologia , Proteínas de Ligação a DNA/biossíntese , Endonucleases/biossíntese , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Proteínas de Neoplasias/biossíntese , Timidilato Sintase/biossíntese , beta Catenina/biossíntese
11.
Acta Neuropathol Commun ; 1: 85, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24367907

RESUMO

BACKGROUND: Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system (CNS), which is characterized by the presence of pathogenic serum autoantibodies against aquaporin 4 (AQP4) in the vast majority of patients. The contribution of T cells to the formation of astrocyte destructive lesions is currently unclear. However, active human NMO lesions contain CD4+ T-lymphocytes expressing the activation marker Ox40, and the expression is more profound compared to that seen in MS lesions of comparable activity. Therefore, we analyzed the role of T-cell activation within the CNS in the initiation of NMO lesions in an experimental model of co-transfer of different encephalitogenic T-cells and human AQP4 antibody containing NMO immunoglobulin (NMO IgG). We further studied the expression of the T-cell activation marker Ox40 in NMO and multiple sclerosis lesions in different stages of activity. RESULTS: All encephalitogenic T-cell lines used in our experiments induced brain inflammation with a comparable extent of blood brain barrier damage, allowing human NMO IgG to penetrate into the brain and spinal cord tissue. However, astrocyte destructive NMO lesions were only seen with T-cells, which showed signs of activation in the lesions. T-cell activation was reflected by the expression of the activation marker Ox40 and pronounced production of γ-IFN, which was able to increase the production of complement proteins and of the Fc gamma III receptor (Fcgr3) and decreased production of complement inhibitory protein Factor H in microglia. CONCLUSIONS: Our data indicate that local activation of T-cells provide an inflammatory environment in the CNS, which allows AQP4 auto-antibodies to induce astrocyte destructive NMO-like lesions.


Assuntos
Encéfalo/imunologia , Neuromielite Óptica/imunologia , Medula Espinal/imunologia , Linfócitos T/fisiologia , Animais , Aquaporina 4/metabolismo , Astrócitos/imunologia , Astrócitos/patologia , Encéfalo/patologia , Linhagem Celular , Células Cultivadas , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Imunoglobulina G/metabolismo , Interferon gama/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Microglia/patologia , Microglia/fisiologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Neuromielite Óptica/patologia , Ratos Endogâmicos Lew , Receptores de IgG/metabolismo , Medula Espinal/patologia , Linfócitos T/patologia
12.
PLoS Pathog ; 9(5): e1003336, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696732

RESUMO

Since Kaposi's sarcoma associated herpesvirus (KSHV) establishes a persistent infection in human B cells, B cells are a critical compartment for viral pathogenesis. RTA, the replication and transcription activator of KSHV, can either directly bind to DNA or use cellular DNA binding factors including CBF1/CSL as DNA adaptors. In addition, the viral factors LANA1 and vIRF4 are known to bind to CBF1/CSL and modulate RTA activity. To analyze the contribution of CBF1/CSL to reactivation in human B cells, we have successfully infected DG75 and DG75 CBF1/CSL knock-out cell lines with recombinant KSHV.219 and selected for viral maintenance by selective medium. Both lines maintained the virus irrespective of their CBF1/CSL status. Viral reactivation could be initiated in both B cell lines but viral genome replication was attenuated in CBF1/CSL deficient lines, which also failed to produce detectable levels of infectious virus. Induction of immediate early, early and late viral genes was impaired in CBF1/CSL deficient cells at multiple stages of the reactivation process but could be restored to wild-type levels by reintroduction of CBF1/CSL. To identify additional viral RTA target genes, which are directly controlled by CBF1/CSL, we analyzed promoters of a selected subset of viral genes. We show that the induction of the late viral genes ORF29a and ORF65 by RTA is strongly enhanced by CBF1/CSL. Orthologs of ORF29a in other herpesviruses are part of the terminase complex required for viral packaging. ORF65 encodes the small capsid protein essential for capsid shell assembly. Our study demonstrates for the first time that in human B cells viral replication can be initiated in the absence of CBF1/CSL but the reactivation process is severely attenuated at all stages and does not lead to virion production. Thus, CBF1/CSL acts as a global hub which is used by the virus to coordinate the lytic cascade.


Assuntos
Genes Virais/fisiologia , Herpesvirus Humano 8/fisiologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Fases de Leitura Aberta/fisiologia , Ativação Viral/fisiologia , Linfócitos B , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética
13.
Mol Ther ; 21(2): 300-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23299796

RESUMO

Tumor necrosis factor alpha (TNFα) is a potent antitumoral cytokine, either killing tumor cells directly or affecting the tumor vasculature leading to enhanced accumulation of macromolecular drugs. Due to dose limiting side effects systemic administration of TNFα protein at therapeutically active doses is precluded. With gene vectors, tumor restricted TNFα expression can be achieved and in principle synergize with chemotherapy. Synthetic gene carriers based on polyamines were intravenously injected, which either passively accumulate within the tumor or specifically target the epidermal growth factor receptor. A single intravenous injection of TNFα gene vector promoted accumulation of liposomal doxorubicine (Doxil) in murine neuroblastoma and human hepatoma by enhancing tumor endothelium permeability. The expression of transgenic TNFα was restricted to tumor tissue. Three treatment cycles with TNFα gene vectors and Doxil significantly delayed tumor growth in subcutaneous murine Neuro2A neuroblastoma. Also tumors re-growing after initial treatment were successfully treated in a fourth cycle pointing at the absence of resistance mechanisms. Systemic Neuro2A metastases or human LS174T colon carcinoma metastases in liver were also successfully treated with this combined approach. In conclusion, this schedule opens the possibility for the efficient treatment of tumors metastases otherwise not accessible for macromolecular drug carriers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Doxorrubicina/farmacologia , Terapia Genética/métodos , Metástase Neoplásica/terapia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Bioensaio , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Lentivirus/genética , Camundongos , Plasmídeos/genética , Transfecção/métodos , Transgenes
14.
Nature ; 488(7413): 675-9, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22914092

RESUMO

The blood­brain barrier (BBB) and the environment of the central nervous system (CNS) guard the nervous tissue from peripheral immune cells. In the autoimmune disease multiple sclerosis, myelin-reactive T-cell blasts are thought to transgress the BBB and create a pro-inflammatory environment in the CNS, thereby making possible a second autoimmune attack that starts from the leptomeningeal vessels and progresses into the parenchyma. Using a Lewis rat model of experimental autoimmune encephalomyelitis, we show here that contrary to the expectations of this concept, T-cell blasts do not efficiently enter the CNS and are not required to prepare the BBB for immune-cell recruitment. Instead, intravenously transferred T-cell blasts gain the capacity to enter the CNS after residing transiently within the lung tissues. Inside the lung tissues, they move along and within the airways to bronchus-associated lymphoid tissues and lung-draining mediastinal lymph nodes before they enter the blood circulation from where they reach the CNS. Effector T cells transferred directly into the airways showed a similar migratory pattern and retained their full pathogenicity. On their way the T cells fundamentally reprogrammed their gene-expression profile, characterized by downregulation of their activation program and upregulation of cellular locomotion molecules together with chemokine and adhesion receptors. The adhesion receptors include ninjurin 1, which participates in T-cell intravascular crawling on cerebral blood vessels. We detected that the lung constitutes a niche not only for activated T cells but also for resting myelin-reactive memory T cells. After local stimulation in the lung, these cells strongly proliferate and, after assuming migratory properties, enter the CNS and induce paralytic disease. The lung could therefore contribute to the activation of potentially autoaggressive T cells and their transition to a migratory mode as a prerequisite to entering their target tissues and inducing autoimmune disease.


Assuntos
Encéfalo/patologia , Movimento Celular , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Pulmão/patologia , Linfócitos T/patologia , Transferência Adotiva , Animais , Autoimunidade/imunologia , Barreira Hematoencefálica/imunologia , Encéfalo/citologia , Encéfalo/imunologia , Moléculas de Adesão Celular Neuronais/metabolismo , Circulação Cerebrovascular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Memória Imunológica , Pulmão/citologia , Pulmão/imunologia , Ativação Linfocitária , Bainha de Mielina/imunologia , Fatores de Crescimento Neural/metabolismo , Ratos , Ratos Endogâmicos Lew , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
15.
Eur J Immunol ; 42(6): 1627-38, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22678915

RESUMO

The transcriptional regulator FOXP3 is an important determinant of regulatory T (Treg) cell development and function and is frequently used to quantitate Treg cells. However, FOXP3 is also expressed in recently activated conventional human T cells. Here, we investigated the FOXP3 expression patterns in Treg and activated T cells at a cellular level. Upon activation, human CD4(+) CD25(-) T cells expressed FOXP3 mainly in the cytoplasm, in sharp contrast to human CD4(+) CD25(+) Treg cells, where we found FOXP3 to be predominantly expressed in the nucleus. A GFP-FOXP3-fusion protein shuttled from the nucleus to the cytoplasm in transfected primary human T cells. We identified two novel leucine-rich nuclear export signals in FOXP3. Site-directed mutagenesis of both sequences completely abolished nuclear export of FOXP3 in human T cells. Both export sequences localized to exons affected by alternative splicing. The three isoforms FOXP3Δ2, FOXP3Δ7, and FOXP3Δ2Δ7 localized preferentially to the nucleus. Additionally, forced expression of nucleus-directed FOXP3 induced a Treg-cell-associated gene expression pattern and induced regulatory capacity. These findings should aid in the interpretation of future studies utilizing FOXP3 expression as a Treg-cell marker and shed some light on the molecular mechanisms controlling subcellular FOXP3 localization in human T cells.


Assuntos
Fatores de Transcrição Forkhead/análise , Linfócitos T Reguladores/química , Linfócitos T/química , Núcleo Celular/química , Células Cultivadas , Citoplasma/química , Fatores de Transcrição Forkhead/fisiologia , Humanos , Ativação Linfocitária , Sinais de Exportação Nuclear , Linfócitos T/ultraestrutura , Linfócitos T Reguladores/ultraestrutura
16.
Int J Cancer ; 131(12): 2808-19, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22511343

RESUMO

A major obstacle in the successful treatment of cancer is the occurrence of chemoresistance. Cancer cells surviving chemotherapy and giving rise to a recurrence of the tumor are termed cancer stem cells and can be identified by elevated levels of certain stem cell markers. Eradication of this cell population is a priority objective in cancer therapy. Here, we report elevated levels of stem cell markers in MCF-7 mammospheres. Likewise, an upregulation of HER2 and its differential expression within individual cells of mammospheres was observed. Sorting for HER2(high) and HER2(low) cells revealed an upregulation of stem cell markers NANOG, OCT4 and SOX2 in the HER2(low) cell fraction. Accordingly, HER2(low) cells also showed reduced proliferation, ductal-like outgrowths and an increased number of colonies in matrigel. Xenografts from subcutaneously injected HER2(low) sorted cells exihibited earlier onset but slower growth of tumors and an increase in stem cell markers compared to tumors developed from the HER2(high) fraction. Treatment of mammospheres with salinomycin reduced the expression of SOX2 indicating a selective targeting of cancer stem cells. Trastuzumab however, did not reduce the expression of SOX2 in mammospheres. Furthermore, a combinatorial treatment of mammospheres with trastuzumab and salinomycin was superior to single treatment with each drug. Thus, targeting HER2 expressing tumors with anti-HER2 therapies will not necessarily eliminate cancer stem cells and may lead to a more aggressive cancer cell phenotype. Our study demonstrates efficient killing of both HER2 positive cells and cancer stem cells, hence opening a possibility for a new combinatorial treatment strategy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sequência de Bases , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Primers do DNA , Feminino , Humanos , Piranos/administração & dosagem , Piranos/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Trastuzumab
17.
Clin Exp Med ; 12(1): 25-30, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21519961

RESUMO

The hedgehog (Hh) signaling pathway has been shown to be activated in the cancer stem cells of several tumor entities. The Hh inhibitor GDC-0449 has been proven to be effective in some cancers but not yet in lung cancer. We aimed at investigating whether GDC-0449 is effective in the lung cancer cell lines HCC (adenocarcinoma) and H1339 (small-cell-lung carcinoma), whether in these cell lines stem cell-like side populations (SPs) can be identified, and whether possible effects of GDC-0449 are mediated via SPs. SPs were identified by spectrum shift and decreased fluorescence after staining with 2.5 µg/ml Hoechst 33342. Expression of proteins was quantified by immunofluorescence. GDC-0449 (25 and 50 µM) inhibited concentration-dependent cell growth in HCC and H1339 cells. Further, the inhibitory effects of cisplatin on cell growth were augmented. In HCC and H1339 cell lines, SPs of 0.57 and 0.46% could be identified, respectively. SP, but not non-SP, cells were able to repopulate the original tumor population. The Hh receptor smoothened was detectable in SP but not in non-SP cells, showing the activation of the Hh pathway only in SPs. GDC-0449 considerably reduced SPs in HCC and H1339 cells. We demonstrate for the first time that GDC-0449 effectively reduces cell growth in lung cancer cell lines. This effect is mediated by the inhibition of stem cell-like SPs.


Assuntos
Anilidas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , Piridinas/metabolismo , Transdução de Sinais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzimidazóis/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Citometria de Fluxo , Fluorescência , Imunofluorescência , Humanos , Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Fatores de Tempo
18.
Arterioscler Thromb Vasc Biol ; 32(2): e13-21, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22199368

RESUMO

OBJECTIVE: Cord blood-derived human endothelial colony-forming cells (ECFCs) bear a high proliferative capacity and potently enhance tissue neovascularization in vivo. Here, we investigated whether the leading mechanism for the functional improvement relates to their physical vascular incorporation or perivascular paracrine effects and whether the effects can be further enhanced by dual-cell-based therapy, including mesenchymal stem cells (MSCs). METHODS AND RESULTS: ECFCs or MSCs were lentivirally transduced with thymidine kinase suicide gene driven by the endothelial-specific vascular endothelial growth factor 2 (kinase insert domain receptor) promoter and evaluated in a hindlimb ischemia model. ECFCs and MSCs enhanced neovascularization after ischemic events to a similar extent. Dual therapy using ECFCs and MSCs further enhanced neovascularization. Mechanistically, 3 weeks after induction of ischemia followed by cell therapy, ganciclovir-mediated elimination of kinase insert domain receptor(+) cells completely reversed the therapeutic effect of ECFCs but not that of MSCs. Histological analysis revealed that ganciclovir effectively eliminated ECFCs incorporated into the vasculature. CONCLUSIONS: Endothelial-specific suicide gene technology demonstrates distinct mechanisms for ECFCs and MSCs, with complete abolishment of ECFC-mediated effects, whereas MSC-mediated effects remained unaffected. These data strengthen the notion that a dual-cell-based therapy represents a promising approach for vascular regeneration of ischemic tissue.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Endotélio Vascular/citologia , Membro Posterior/irrigação sanguínea , Isquemia/terapia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/fisiologia , Células-Tronco/citologia , Animais , Proliferação de Células , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Feminino , Ganciclovir/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Nus , Modelos Animais , Fenótipo , Recuperação de Função Fisiológica/fisiologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia
19.
Stem Cells ; 29(3): 418-29, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21308861

RESUMO

The identification of novel approaches to specifically target the DNA-damage checkpoint response in chemotherapy-resistant cancer stem cells (CSC) of solid tumors has recently attracted great interest. We show here in colon cancer cell lines and primary colon cancer cells that inhibition of checkpoint-modulating phosphoinositide 3-kinase-related (PIK) kinases preferentially depletes the chemoresistant and exclusively tumorigenic CD133(+) cell fraction. We observed a time- and dose-dependent disproportionally pronounced loss of CD133(+) cells and the consecutive lack of in vitro and in vivo tumorigenicity of the remaining cells. Depletion of CD133(+) cells was initiated through apoptosis of cycling CD133(+) cells and further substantiated through subsequent recruitment of quiescent CD133(+) cells into the cell cycle followed by their elimination. Models using specific PIK kinase inhibitors, somatic cell gene targeting, and RNA interference demonstrated that the observed detrimental effects of caffeine on CSC were attributable specifically to the inhibition of the PIK kinase ataxia telangiectasia- and Rad3-related (ATR). Mechanistically, phosphorylation of CHK1 checkpoint homolog (S. pombe; CHK1) was significantly enhanced in CD133(+) as compared with CD133(-) cells on treatment with DNA interstrand-crosslinking (ICL) agents, indicating a preferential activation of the ATR/CHK1-dependent DNA-damage response in tumorigenic CD133(+) cells. Consistently, the chemoresistance of CD133(+) cells toward DNA ICL agents was overcome through inhibition of ATR/CHK1-signaling. In conclusion, our study illustrates a novel target to eliminate the tumorigenic CD133(+) cell population in colon cancer and provides another rationale for the development of specific ATR-inhibitors.


Assuntos
Carcinoma/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Transformação Celular Neoplásica/genética , Neoplasias do Colo/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/terapia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Separação Celular/métodos , Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/terapia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Terapia Genética , Glicoproteínas/metabolismo , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , RNA Interferente Pequeno/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nucleic Acids Res ; 39(7): e44, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21266484

RESUMO

In recent years, the field of epigenetics has grown dramatically and has become one of the most dynamic and fast-growing branches of molecular biology. The amount of diseases suspected of being influenced by DNA methylation is rising steadily and includes common diseases such as schizophrenia, bipolar disorder, Alzheimer's disease, diabetes, atherosclerosis, cancer, major psychosis, lupus and Parkinson's disease. Due to cellular heterogeneity of methylation patterns, epigenetic analyses of single cells become a necessity. One rationale is that DNA methylation profiles are highly variable across individual cells, even in the same organ, dependent on the function of the gene, disease state, exposure to environmental factors (e.g. radiation, drugs or nutrition), stochastic fluctuations and various other causes. Using a polymerase chain reaction (PCR)-slide microreaction system, we present here a methylation-sensitive PCR analysis, the restriction enzyme-based single-cell methylation assay (RSMA), in the analysis of DNA methylation patterns in single cells. This method addresses the problems of cell heterogeneity in epigenetics research; it is comparably affordable, avoids complicated microfluidic systems and offers the opportunity for high-throughput screening, as many single cells can be screened in parallel. In addition to this study, critical principles and caveats of single cell methylation analyses are discussed.


Assuntos
Metilação de DNA , Análise de Célula Única , Linhagem Celular , Linhagem Celular Tumoral , Ilhas de CpG , Enzimas de Restrição do DNA , Ensaios de Triagem em Larga Escala , Humanos , Linfócitos/metabolismo , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...