Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 948: 174927, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038684

RESUMO

The global climate is under threat from increasing extreme heat, evidenced by rising temperatures and a surge in hot days. Heat waves are intensifying worldwide, impacting cities and residents, as demonstrated by the record-breaking heat experienced in the UK in 2022, which resulted in over 4500 deaths. Urban heat islands (UHIs) exacerbate these heat waves, making city residents more vulnerable to heat-related deaths. UHIs occur when temperatures in urban areas exceed those in surrounding rural areas due to the heat-absorbing properties of urban structures. Implementing mitigation strategies, such as green infrastructure, is crucial for enhancing urban resilience and reducing vulnerability to UHIs. Effectively addressing UHIs requires a systematic approach, including developing risk maps to prioritise areas for UHI mitigation strategies. Using remote sensing, GIS, and SPSS correlational analysis, the research aims to develop and assess a Heat Risk Index (HRI). This index integrates UHI spatial intensity, current green cover, and population density at the district level to develop the risk index. This study stands out for its novel approach to developing the HRI, focusing on the localised impact of the UHI in Manchester City, identifying high-risk heat-vulnerable districts, and prioritising implementing effective UHI mitigation strategies. The findings highlight the importance of this approach, revealing that approximately 30 % of Manchester City is affected by UHI effects, with areas near the city centre, characterised by higher population density and reduced green cover, being particularly vulnerable. Furthermore, the study suggests that applying HRIs at a more localised level, such as the neighbourhood level rather than the district level, would provide more relevant and targeted insights for mitigating UHI. A more localised index would offer tailored insights into the unique conditions of each neighbourhood within the districts, enabling more effective mitigation strategies. The HRI developed in this paper serves as a test for a more nuanced and comprehensive index, considering additional variables related to population vulnerability and city urban structure.

2.
Sci Total Environ ; 931: 172528, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663620

RESUMO

In Transit-Oriented Development (TOD), the close integration of residential structures with community activities and traffic heightens residents' exposure to traffic-related pollutants. Despite traffic being a primary source of particulate matter (PM), the compact design of TODs, together with the impact of urban heat island (UHI), increases the likelihood of trapping emitted PM from traffic, leading to heightened exposure of TOD residents to PM. Although PM originates from two distinct sources in road traffic, exhaust and non-exhaust emissions (NEE), current legislation addressing traffic-related PM from non-exhaust emissions sources remains limited. This paper focuses on two TOD typologies in Manchester City-Manchester Piccadilly and East Didsbury-to understand the roles of TOD traffic as a PM generator and TOD place design as a PM container and trapper. The investigation aims to establish correlations between street design canyon ratios, vehicular Speed, and PM10/PM2.5, providing design guidance and effective traffic management strategies to control PM emissions within TODs. Through mapping the canyon ratio and utilising the Breezometer API for PM monitoring, the paper revealed elevated PM levels in both TOD areas, exceeding World Health Organization (WHO) recommendations, particularly for PM2.5. Correlation analysis between canyon configuration and PM2.5/PM10 highlighted the importance of considering building heights and avoiding the creation of deep canyons in TOD design to minimise the limited dispersion of PM. Leveraging UK road statistics and the PTV Group API for vehicle speed calculations, the paper studied the average speeds on the TOD roads concerning PM. Contrary to conventional assumption, the correlation analyses have revealed a noteworthy association shift between vehicular speed and PM concentrations. A positive correlation existed between speed increase and PM increases on arterial roads. However, a negative correlation emerged on main, collector, and local streets, indicating that PM levels rise for both PM10 and PM2.5 as Speed decreases. These findings challenge the traditional assumption that higher Speed leads to increased emissions, highlighting the potential impact of NEE on PM concentrations. This paper calls for thorough design considerations and traffic management strategies in TOD, especially in dense areas, considering building height, optimising traffic flow, and enhancing compromised air quality associated with vehicular emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA