Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 374(1769): 20180202, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30967080

RESUMO

The range of hosts exploited by a parasite is determined by several factors, including host availability, infectivity and exploitability. Each of these can be the target of natural selection on both host and parasite, which will determine the local outcome of interactions, and potentially lead to coevolution. However, geographical variation in host use and specificity has rarely been investigated. Maculinea (= Phengaris) butterflies are brood parasites of Myrmica ants that are patchily distributed across the Palæarctic and have been studied extensively in Europe. Here, we review the published records of ant host use by the European Maculinea species, as well as providing new host ant records for more than 100 sites across Europe. This comprehensive survey demonstrates that while all but one of the Myrmica species found on Maculinea sites have been recorded as hosts, the most common is often disproportionately highly exploited. Host sharing and host switching are both relatively common, but there is evidence of specialization at many sites, which varies among Maculinea species. We show that most Maculinea display the features expected for coevolution to occur in a geographic mosaic, which has probably allowed these rare butterflies to persist in Europe. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.


Assuntos
Formigas/parasitologia , Coevolução Biológica , Borboletas/fisiologia , Interações Hospedeiro-Parasita , Comportamento de Nidação , Simbiose , Animais , Europa (Continente) , Especificidade da Espécie
2.
Proc Biol Sci ; 280(1751): 20122336, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23193127

RESUMO

An emerging problem in conservation is whether listed morpho-species with broad distributions, yet specialized lifestyles, consist of more than one cryptic species or functionally distinct forms that have different ecological requirements. We describe extreme regional divergence within an iconic endangered butterfly, whose socially parasitic young stages use non-visual, non-tactile cues to infiltrate and supplant the brood in ant societies. Although indistinguishable morphologically or when using current mitochondrial and nuclear sequence-, or microsatellite data, Maculinea rebeli from Spain and southeast Poland exploit different Myrmica ant species and experience 100 per cent mortality with each other's hosts. This reflects major differences in the hydrocarbons synthesized from each region by the larvae, which so closely mimic the recognition profiles of their respective hosts that nurse ants afford each parasite a social status above that of their own kin larvae. The two host ants occupy separate niches within grassland; thus, conservation management must differ in each region. Similar cryptic differentiation may be common, yet equally hard to detect, among the approximately 10 000 unstudied morpho-species of social parasite that are estimated to exist, many of which are Red Data Book listed.


Assuntos
Adaptação Biológica/fisiologia , Formigas/parasitologia , Borboletas/fisiologia , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Especificidade de Hospedeiro/fisiologia , Comportamento Social , Animais , DNA Mitocondrial/genética , Interações Hospedeiro-Parasita , Hidrocarbonetos/metabolismo , Larva/metabolismo , Repetições de Microssatélites/genética , Polônia , Espanha , Especificidade da Espécie , Análise de Sobrevida
3.
Am Nat ; 179(1): 110-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22173464

RESUMO

Numerous invertebrates inhabit social insect colonies, including the hoverfly genus Microdon, whose larvae typically live as brood predators. Formica lemani ant colonies apparently endure Microdon mutabilis infections over several years, despite losing a considerable fraction of young, and may even produce more gynes. We present a model for resource allocation within polygynous ant colonies, which assumes that whether an ant larva switches development into a worker or a gyne depends on the quantity of food received randomly from workers. Accordingly, Microdon predation promotes gyne development by increasing resource availability for surviving broods. Several model predictions are supported by empirical data. (i) Uninfected colonies seldom produce gynes. (ii) Infected colonies experience a short-lived peak in gyne production leading to a bimodal distribution in gyne production. (iii) Low brood : worker ratio is the critical mechanism controlling gyne production. (iv) Brood : worker ratio reduction must be substantial for increased gyne production to become noticeable.


Assuntos
Formigas/parasitologia , Dípteros/fisiologia , Cadeia Alimentar , Animais , Larva/fisiologia , Modelos Biológicos , Densidade Demográfica , Dinâmica Populacional , Comportamento Predatório , Reprodução , Fatores de Tempo
4.
Am Nat ; 169(4): 466-80, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17269113

RESUMO

Caterpillars of the butterfly Maculinea rebeli develop as parasites inside ant colonies. In intensively studied French populations, about 25% of caterpillars mature within 1 year (fast-developing larvae [FDL]) and the others after 2 years (slow-developing larvae [SDL]); all available evidence indicates that this ratio is under the control of egg-laying females. We present an analytical model to predict the evolutionarily stable fraction of FDL (pESS). The model accounts for added winter mortality of SDL, general and kin competition among caterpillars, a competitive advantage of SDL over newly entering FDL (priority effect), and the avoidance of renewed infection of ant nests by butterflies in the coming season (segregation). We come to the following conclusions: (1) all factors listed above can promote the evolution of delayed development; (2) kin competition and segregation stabilize pESS near 0.5; and (3) a priority effect is the only mechanism potentially selecting for pESS < 0.5. However, given the empirical data, pESS is predicted to fall closer to 0.5 than to the 0.25 that has been observed. In this particular system, bet hedging cannot explain why more than 50% of larvae postpone growth. Presumably, other fitness benefits for SDL, for example, higher fertility or longevity, also contribute to the evolution of delayed development. The model presented here may be of general applicability for systems where maturing individuals compete in small subgroups.


Assuntos
Adaptação Biológica , Evolução Biológica , Borboletas/crescimento & desenvolvimento , Modelos Biológicos , Simbiose , Animais , Formigas/fisiologia , Simulação por Computador , França , Larva/crescimento & desenvolvimento , Seleção Genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...