Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Mol Plant Pathol ; 25(5): e13463, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695677

RESUMO

The barley powdery mildew fungus, Blumeria hordei (Bh), secretes hundreds of candidate secreted effector proteins (CSEPs) to facilitate pathogen infection and colonization. One of these, CSEP0008, is directly recognized by the barley nucleotide-binding leucine-rich-repeat (NLR) receptor MLA1 and therefore is designated AVRA1. Here, we show that AVRA1 and the sequence-unrelated Bh effector BEC1016 (CSEP0491) suppress immunity in barley. We used yeast two-hybrid next-generation interaction screens (Y2H-NGIS), followed by binary Y2H and in planta protein-protein interactions studies, and identified a common barley target of AVRA1 and BEC1016, the endoplasmic reticulum (ER)-localized J-domain protein HvERdj3B. Silencing of this ER quality control (ERQC) protein increased Bh penetration. HvERdj3B is ER luminal, and we showed using split GFP that AVRA1 and BEC1016 translocate into the ER signal peptide-independently. Overexpression of the two effectors impeded trafficking of a vacuolar marker through the ER; silencing of HvERdj3B also exhibited this same cellular phenotype, coinciding with the effectors targeting this ERQC component. Together, these results suggest that the barley innate immunity, preventing Bh entry into epidermal cells, requires ERQC. Here, the J-domain protein HvERdj3B appears to be essential and can be regulated by AVRA1 and BEC1016. Plant disease resistance often occurs upon direct or indirect recognition of pathogen effectors by host NLR receptors. Previous work has shown that AVRA1 is directly recognized in the cytosol by the immune receptor MLA1. We speculate that the AVRA1 J-domain target being inside the ER, where it is inapproachable by NLRs, has forced the plant to evolve this challenging direct recognition.


Assuntos
Ascomicetos , Retículo Endoplasmático , Hordeum , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Hordeum/microbiologia , Hordeum/genética , Hordeum/imunologia , Ascomicetos/patogenicidade , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Retículo Endoplasmático/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Domínios Proteicos
2.
Eur J Nutr ; 63(6): 2035-2054, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38662018

RESUMO

PURPOSE: Impaired gut barrier function is associated with systemic inflammation and many chronic diseases. Undigested dietary proteins are fermented in the colon by the gut microbiota which produces nitrogenous metabolites shown to reduce barrier function in vitro. With growing evidence of sex-based differences in gut microbiotas, we determined whether there were sex by dietary protein interactions which could differentially impact barrier function via microbiota modification. METHODS: Fermentation systems were inoculated with faeces from healthy males (n = 5) and females (n = 5) and supplemented with 0.9 g of non-hydrolysed proteins sourced from whey, fish, milk, soya, egg, pea, or mycoprotein. Microbial populations were quantified using fluorescence in situ hybridisation with flow cytometry. Metabolite concentrations were analysed using gas chromatography, solid phase microextraction coupled with gas chromatography-mass spectrometry and ELISA. RESULTS: Increased protein availability resulted in increased proteolytic Bacteroides spp (p < 0.01) and Clostridium coccoides (p < 0.01), along with increased phenol (p < 0.01), p-cresol (p < 0.01), indole (p = 0.018) and ammonia (p < 0.01), varying by protein type. Counts of Clostridium cluster IX (p = 0.03) and concentration of p-cresol (p = 0.025) increased in males, while females produced more ammonia (p = 0.02), irrespective of protein type. Further, we observed significant sex-protein interactions affecting bacterial populations and metabolites (p < 0.005). CONCLUSIONS: Our findings suggest that protein fermentation by the gut microbiota in vitro is influenced by both protein source and the donor's sex. Should these results be confirmed through human studies, they could have major implications for developing dietary recommendations tailored by sex to prevent chronic illnesses.


Assuntos
Dieta Rica em Proteínas , Fezes , Fermentação , Microbioma Gastrointestinal , Masculino , Feminino , Humanos , Microbioma Gastrointestinal/fisiologia , Dieta Rica em Proteínas/métodos , Fezes/microbiologia , Fezes/química , Fatores Sexuais , Adulto , Proteínas Alimentares/administração & dosagem , Bacteroides/fisiologia
3.
Food Chem ; 447: 138932, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484546

RESUMO

The thawing method is critical for the final quality of products based on the frozen dough. The effects of ultrasound thawing, proofer thawing, refrigerator thawing, water bath thawing, ambient thawing, and microwave thawing on the rheology, texture, water distribution, fermentation characteristics, and microstructure of frozen dough and the properties of steamed bread were investigated. The results indicated that the ultrasound thawing dough had better physicochemical properties than other doughs. It was found that ultrasound thawing restrained the water migration of dough, improved its rheological properties and fermentation capacity. The total gas volume value of the ultrasound thawing dough was reduced by 21.35% compared with that of unfrozen dough. The ultrasound thawing dough displayed a thoroughly uniform starch-gluten network, and an enhanced the specific volume and internal structure of the steamed bread. In conclusion, ultrasound thawing effectively mitigated the degradation of the frozen dough and enhanced the quality of steamed bread.


Assuntos
Pão , Vapor , Pão/análise , Água/química , Glutens/química , Congelamento , Farinha/análise
4.
Environ Pollut ; 342: 122931, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006995

RESUMO

Pollen and nectar can be contaminated with a range of pesticides, including insecticides, fungicides, and herbicides. Since these matrices are important food sources for pollinators and other beneficial insects, their contamination can represent a key route of exposure. However, limited knowledge exists with respect to pesticide residue levels and their dynamics in these matrices for many crops and active ingredients (AIs). We used controlled glasshouse studies to investigate the residue dynamics of a systemic (cyprodinil) and a contact (fludioxonil) fungicide in the floral matrices and other plant parts of courgette/zucchini (Cucurbita pepo L.). We aimed to better understand the processes behind residue accumulation and decline in pollen and nectar. Each AI was applied to plants, either by spraying whole plants or by targeted spraying onto leaves only. Samples of pollen, nectar, anthers, flowers, and leaves were taken on the day of application and each subsequent morning for up to 13 days and analysed for residues using LC-MS/MS. Significant differences in residue levels and dynamics were found between AIs and floral matrices. The present study allowed for the identification of potential routes by which residues translocate between tissues and to link those to the physicochemical properties of each AI, which may facilitate the prediction of residue levels in pollen and nectar. Residues of the contact AI declined more quickly than those of the systemic AI in pollen and nectar. Our results further suggest that the risk of oral exposure for pollinators may be considerably reduced by using contact AIs during the green bud stage of plants, but application of systemic compounds could still result in a low, but continuous long-term exposure for pollinators with limited decline.


Assuntos
Cucurbita , Fungicidas Industriais , Abelhas , Néctar de Plantas/química , Fungicidas Industriais/análise , Cucurbita/química , Polinização , Cromatografia Líquida , Espectrometria de Massas em Tandem , Flores , Pólen/química , Verduras
5.
Plant Cell ; 36(3): 510-539, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38000896

RESUMO

A crucial step in functional genomics is identifying actively translated ORFs and linking them to biological functions. The challenge lies in identifying short ORFs, as their identification is greatly influenced by data quality and depth. Here, we improved the coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes. Assisted by a transcriptome assembly, we identified 7,751 unconventional translation events, comprising 6,996 upstream ORFs (uORFs) and 209 downstream ORFs on annotated protein-coding genes, as well as 546 ORFs in presumed noncoding RNAs. Proteomic data confirmed the production of stable proteins from some of these unannotated translation events. We present evidence of active translation from primary transcripts of trans-acting small interfering RNAs (TAS1-4) and microRNAs (pri-MIR163 and pri-MIR169) and periodic ribosome stalling supporting cotranslational decay. Additionally, we developed a method for identifying extremely short uORFs, including 370 minimum uORFs (AUG-stop), and 2,921 tiny uORFs (2 to 10 amino acids) and 681 uORFs that overlap with each other. Remarkably, these short uORFs exhibit strong translational repression as do longer uORFs. We also systematically discovered 594 uORFs regulated by alternative splicing, suggesting widespread isoform-specific translational control. Finally, these prevalent uORFs are associated with numerous important pathways. In summary, our improved Arabidopsis translational landscape provides valuable resources to study gene expression regulation.


Assuntos
Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Biossíntese de Proteínas/genética , Perfil de Ribossomos , Fases de Leitura Aberta/genética , Proteômica , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Methods Mol Biol ; 2690: 205-222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450150

RESUMO

Yeast two-hybrid is a powerful approach to discover new protein-protein interactions. Traditional methods involve screening a target protein against a cDNA expression library and assaying individual positive colonies to identify interacting partners. Here we describe a simple approach to perform yeast two-hybrid screens of a cDNA expression library in batch liquid culture. Positive yeast cell populations are enriched under selection and then harvested en masse. Prey cDNAs are amplified and used as input for next-generation sequencing libraries for identification, quantification, and ranking.


Assuntos
Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , DNA Complementar/genética , Técnicas do Sistema de Duplo-Híbrido , Biblioteca Gênica
7.
Methods Mol Biol ; 2690: 223-239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450151

RESUMO

Yeast two-hybrid next-generation interaction screening (Y2H-NGIS) uses the output of next-generation sequencing to mine for novel protein-protein interactions. Here, we outline the analytics underlying Y2H-NGIS datasets. Different systems, libraries, and experimental designs comprise Y2H-NGIS methodologies. We summarize the analysis in several layers that comprise the characterization of baits and preys, quantification, and identification of true interactions for subsequent secondary validation. We present two software designed for this purpose, NGPINT and Y2H-SCORES, which are used as front-end and back-end tools in the analysis. Y2H-SCORES software can be used and adapted to analyze different datasets not only from Y2H-NGIS but from other techniques ruled by similar biological principles.


Assuntos
Biologia Computacional , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido
8.
Phytopathology ; 113(10): 1916-1923, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37260101

RESUMO

The plant pathogenic fungus Fusarium graminearum is the causal agent of Fusarium head blight (FHB) disease on small-grain cereals. F. graminearum produces trichothecene mycotoxins such as deoxynivalenol (DON) that are required for full virulence. DON must be exported outside the cell to cause FHB disease, a process that may require the involvement of membrane-bound transporters. In this study, we show that the deletion of membrane-bound transporters results in reduced DON accumulation as well as reduced FHB symptoms on wheat. Deletion of the ATP-binding cassette (ABC) transporter gene Abc1 results in the greatest reduction in DON accumulation and virulence. Deletion of another ABC transporter gene, Abc6, also reduces FHB symptoms to a lesser degree. Combining deletions fails to reduce DON accumulation or virulence in an additive fashion, even when a ∆abc1 deletion is included. Heterologous expression of F. graminearum transporters in a DON-sensitive strain of yeast confirms Abc1 as a major DON resistance mechanism; furthermore, it suggests that Abc1 is directly participating in DON transport rather than facilitating DON transport though other means. Yeast expression further indicates that multiple transporters, including Abc1, play an important role in resistance to the wheat phytoalexin 2-benzoxazolinone (BOA) and other xenobiotics. Thus, Abc1 may contribute to virulence on wheat both by facilitating export of DON and by providing resistance to the wheat phytoalexin BOA. This research provides useful information that may aid in designing novel management techniques of FHB or other destructive plant diseases.


Assuntos
Fusarium , Tricotecenos , Triticum/microbiologia , Virulência , Saccharomyces cerevisiae , Fitoalexinas , Xenobióticos/metabolismo , Doenças das Plantas/microbiologia , Tricotecenos/metabolismo
9.
Plant Genome ; 16(4): e20335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37138544

RESUMO

Wheat (Triticum aestivum L.) is a major source of nutrients for populations across the globe, but the amino acid composition of wheat grain does not provide optimal nutrition. The nutritional value of wheat grain is limited by low concentrations of lysine (the most limiting essential amino acid) and high concentrations of free asparagine (precursor to the processing contaminant acrylamide). There are currently few available solutions for asparagine reduction and lysine biofortification through breeding. In this study, we investigated the genetic architecture controlling grain free amino acid composition and its relationship to other traits in a Robigus × Claire doubled haploid population. Multivariate analysis of amino acids and other traits showed that the two groups are largely independent of one another, with the largest effect on amino acids being from the environment. Linkage analysis of the population allowed identification of quantitative trait loci (QTL) controlling free amino acids and other traits, and this was compared against genomic prediction methods. Following identification of a QTL controlling free lysine content, wheat pangenome resources facilitated analysis of candidate genes in this region of the genome. These findings can be used to select appropriate strategies for lysine biofortification and free asparagine reduction in wheat breeding programs.


Assuntos
Aminoácidos , Triticum , Aminoácidos/genética , Mapeamento Cromossômico , Triticum/genética , Triticum/química , Asparagina/análise , Asparagina/genética , Lisina/genética , Melhoramento Vegetal , Grão Comestível/genética , Reino Unido
10.
J Agric Food Chem ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36745538

RESUMO

The nutritional safety of wheat-based food products is compromised by the presence of the processing contaminant acrylamide. Reduction of the key acrylamide precursor, free (soluble, non-protein) asparagine, in wheat grain can be achieved through crop management strategies, but such strategies have not been fully developed. We ran two field trials with 12 soft (biscuit) wheat varieties and different nitrogen, sulfur, potassium, and phosphorus fertilizer combinations. Our results indicated that a nitrogen-to-sulfur ratio of 10:1 kg/ha was sufficient to prevent large increases in free asparagine, whereas withholding potassium or phosphorus alone did not cause increases in free asparagine when sulfur was applied. Multispectral measurements of plants in the field were able to predict the free asparagine content of grain with an accuracy of 71%, while a combination of multispectral, fluorescence, and morphological measurements of seeds could distinguish high free asparagine grain from low free asparagine grain with an accuracy of 86%. The acrylamide content of biscuits correlated strongly with free asparagine content and with color measurements, indicating that agronomic strategies to decrease free asparagine would be effective and that quality control checks based on product color could eliminate high acrylamide biscuit products.

11.
New Phytol ; 236(3): 893-910, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35892179

RESUMO

Brassinosteroids (BRs) and Target of Rapamycin Complex (TORC) are two major actors coordinating plant growth and stress responses. Brassinosteroids function through a signaling pathway to extensively regulate gene expression and TORC is known to regulate translation and autophagy. Recent studies have revealed connections between these two pathways, but a system-wide view of their interplay is still missing. We quantified the level of 23 975 transcripts, 11 183 proteins, and 27 887 phosphorylation sites in wild-type Arabidopsis thaliana and in mutants with altered levels of either BRASSINOSTEROID INSENSITIVE 2 (BIN2) or REGULATORY ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), two key players in BR and TORC signaling, respectively. We found that perturbation of BIN2 or RAPTOR1B levels affects a common set of gene-products involved in growth and stress responses. Furthermore, we used the multi-omic data to reconstruct an integrated signaling network. We screened 41 candidate genes identified from the reconstructed network and found that loss of function mutants of many of these proteins led to an altered BR response and/or modulated autophagy activity. Altogether, these results establish a predictive network that defines different layers of molecular interactions between BR- or TORC-regulated growth and autophagy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Regulação da Expressão Gênica de Plantas , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Sirolimo , Fatores de Transcrição/metabolismo
12.
Food Chem ; 387: 132920, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413557

RESUMO

The main goal of this article is to present an overview of the analytical methodologies employed in recent years (2015-2021) to determine several honey constituents, and, specifically, those with health-promoting effects and nutritional value, like phenolic compounds, sugars, amino acids and proteins, vitamins, lipids, minerals, and organic acids. The review is structured according to the different families of compounds, and they will be discussed along with the main extraction and analytical techniques used for their determination. Phenolic compounds, sugars and amino acids have been the main compounds determined in honey. The analytical methods (sample treatment and determination techniques) are strongly dependent on the compound. Nevertheless, it can be concluded that high-performance liquid chromatography was predominantly selected for determining honey constituents; while, in relation to the sample treatment, the preferred option was a dilution of the honey with water or a buffer.


Assuntos
Mel , Aminoácidos , Cromatografia Líquida de Alta Pressão/métodos , Mel/análise , Minerais , Fenóis/análise , Açúcares , Vitaminas/análise
13.
Plants (Basel) ; 11(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35270139

RESUMO

Since the discovery of acrylamide in food, and the identification of free asparagine as the key determinant of acrylamide concentration in wheat products, our understanding of how grain asparagine content is regulated has improved greatly. However, the targeted reduction in grain asparagine content has not been widely implemented in breeding programmes so far. Here we summarise how free asparagine concentration relates to other quality and agronomic traits and show that these relationships are unlikely to pose major issues for the breeding of low-asparagine wheat. We also outline the strategies that are possible for the breeding of low-asparagine wheat, using both natural and induced variation.

14.
Mol Plant Microbe Interact ; 35(3): 274-289, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34889653

RESUMO

The Mla (Mildew resistance locus a) of barley (Hordeum vulgare L.) is an effective model for cereal immunity against fungal pathogens. Like many resistance proteins, variants of the MLA coiled-coil nucleotide-binding leucine-rich repeat (CC-NLR) receptor often require the HRS complex (HSP90, RAR1, and SGT1) to function. However, functional analysis of Sgt1 has been particularly difficult, as deletions are often lethal. Recently, we identified rar3 (required for Mla6 resistance 3), an in-frame Sgt1ΔKL308-309 mutation in the SGT1-specific domain, that alters resistance conferred by MLA but without lethality. Here, we use autoactive MLA6 and recombinant yeast-two-hybrid strains with stably integrated HvRar1 and HvHsp90 to determine that this mutation weakens but does not entirely disrupt the interaction between SGT1 and MLA. This causes a concomitant reduction in MLA6 protein accumulation below the apparent threshold required for effective resistance. The ΔKL308-309 deletion had a lesser effect on intramolecular interactions than alanine or arginine substitutions, and MLA variants that display diminished interactions with SGT1 appear to be disproportionately affected by the SGT1ΔKL308-309 mutation. We hypothesize that those dimeric plant CC-NLRs that appear unaffected by Sgt1 silencing are those with the strongest intermolecular interactions with it. Combining our data with recent work in CC-NLRs, we propose a cyclical model of the MLA-HRS resistosome interactions.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.


Assuntos
Hordeum , Hordeum/microbiologia , Mutação , Proteínas NLR/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
15.
BMC Plant Biol ; 21(1): 302, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187359

RESUMO

BACKGROUND: Understanding the determinants of free asparagine concentration in wheat grain is necessary to reduce levels of the processing contaminant acrylamide in baked and toasted wheat products. Although crop management strategies can help reduce asparagine concentrations, breeders have limited options to select for genetic variation underlying this trait. Asparagine synthetase enzymes catalyse a critical step in asparagine biosynthesis in plants and, in wheat, are encoded by five homeologous gene triads that exhibit distinct expression profiles. Within this family, TaASN2 genes are highly expressed during grain development but TaASN-B2 is absent in some varieties. RESULTS: Natural genetic diversity in the asparagine synthetase gene family was assessed in different wheat varieties revealing instances of presence/absence variation and other polymorphisms, including some predicted to affect the function of the encoded protein. The presence and absence of TaASN-B2 was determined across a range of UK and global common wheat varieties and related species, showing that the deletion encompassing this gene was already present in some wild emmer wheat genotypes. Expression profiling confirmed that TaASN2 transcripts were only detectable in the grain, while TaASN3.1 genes were highly expressed during the early stages of grain development. TaASN-A2 was the most highly expressed TaASN2 homeologue in most assayed wheat varieties. TaASN-B2 and TaASN-D2 were expressed at similar, lower levels in varieties possessing TaASN-B2. Expression of TaASN-A2 and TaASN-D2 did not increase to compensate for the absence of TaASN-B2, so total TaASN2 expression was lower in varieties lacking TaASN-B2. Consequently, free asparagine concentrations in field-produced grain were, on average, lower in varieties lacking TaASN-B2, although the effect was lost when free asparagine accumulated to very high concentrations as a result of sulphur deficiency. CONCLUSIONS: Selecting wheat genotypes lacking the TaASN-B2 gene may be a simple and rapid way for breeders to reduce free asparagine concentrations in commercial wheat grain.


Assuntos
Asparagina/metabolismo , Aspartato-Amônia Ligase/genética , Deleção de Genes , Triticum/genética , Aspartato-Amônia Ligase/metabolismo , Qualidade dos Alimentos , Genes de Plantas/genética , Estudos de Associação Genética , Variação Genética , Triticum/enzimologia , Triticum/metabolismo
16.
PLoS Comput Biol ; 17(4): e1008890, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33798202

RESUMO

Protein-protein interaction networks are one of the most effective representations of cellular behavior. In order to build these models, high-throughput techniques are required. Next-generation interaction screening (NGIS) protocols that combine yeast two-hybrid (Y2H) with deep sequencing are promising approaches to generate interactome networks in any organism. However, challenges remain to mining reliable information from these screens and thus, limit its broader implementation. Here, we present a computational framework, designated Y2H-SCORES, for analyzing high-throughput Y2H screens. Y2H-SCORES considers key aspects of NGIS experimental design and important characteristics of the resulting data that distinguish it from RNA-seq expression datasets. Three quantitative ranking scores were implemented to identify interacting partners, comprising: 1) significant enrichment under selection for positive interactions, 2) degree of interaction specificity among multi-bait comparisons, and 3) selection of in-frame interactors. Using simulation and an empirical dataset, we provide a quantitative assessment to predict interacting partners under a wide range of experimental scenarios, facilitating independent confirmation by one-to-one bait-prey tests. Simulation of Y2H-NGIS enabled us to identify conditions that maximize detection of true interactors, which can be achieved with protocols such as prey library normalization, maintenance of larger culture volumes and replication of experimental treatments. Y2H-SCORES can be implemented in different yeast-based interaction screenings, with an equivalent or superior performance than existing methods. Proof-of-concept was demonstrated by discovery and validation of novel interactions between the barley nucleotide-binding leucine-rich repeat (NLR) immune receptor MLA6, and fourteen proteins, including those that function in signaling, transcriptional regulation, and intracellular trafficking.


Assuntos
Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Receptores Imunológicos/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Conjuntos de Dados como Assunto , Estudo de Prova de Conceito
17.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33367498

RESUMO

Mapping protein-protein interactions at a proteome scale is critical to understanding how cellular signaling networks respond to stimuli. Since eukaryotic genomes encode thousands of proteins, testing their interactions one-by-one is a challenging prospect. High-throughput yeast-two hybrid (Y2H) assays that employ next-generation sequencing to interrogate complementary DNA (cDNA) libraries represent an alternative approach that optimizes scale, cost and effort. We present NGPINT, a robust and scalable software to identify all putative interactors of a protein using Y2H in batch culture. NGPINT combines diverse tools to align sequence reads to target genomes, reconstruct prey fragments and compute gene enrichment under reporter selection. Central to this pipeline is the identification of fusion reads containing sequences derived from both the Y2H expression plasmid and the cDNA of interest. To reduce false positives, these fusion reads are evaluated as to whether the cDNA fragment forms an in-frame translational fusion with the Y2H transcription factor. NGPINT successfully recognized 95% of interactions in simulated test runs. As proof of concept, NGPINT was tested using published data sets and it recognized all validated interactions. NGPINT can process interaction data from any biosystem with an available genome or transcriptome reference, thus facilitating the discovery of protein-protein interactions in model and non-model organisms.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mapas de Interação de Proteínas , Análise de Sequência de Proteína , Software , Técnicas do Sistema de Duplo-Híbrido , Humanos
18.
Int J Psychol ; 56(5): 710-715, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33319358

RESUMO

Many studies indicate that increasing self-awareness leads to individuals reflecting on their values and ideals (Silvia & Duval, 2001). This self-reflection appears to increase prosocial behaviour (Berkowitz, 1987). However, previously studies typically manipulated self-awareness in situations in which the individual may have felt pressure from the researcher to help. Thus, experimenter pressure to behave prosocially confounds the self-awareness explanation provided in past research. We used a novel experimental paradigm to manipulate self-awareness and remove the researcher's presence to decrease the likelihood that the participant would conform to experimenter demand. Participants were 36 college students (Mage  = 19.52; 25 women). The results indicated a strong probability that the experimental condition participants were more prosocial than control condition participants. These findings provide additional support for the hypothesis that self-reflection increases prosocial behaviour, even without experimenter demands. These findings and the importance of studying objective self-awareness in light of the coronavirus are discussed.


Assuntos
Altruísmo , Conscientização , Autoimagem , COVID-19 , Feminino , Humanos , Masculino , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Universidades , Adulto Jovem
19.
Food Chem ; 339: 128077, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152870

RESUMO

2-Acetyl-1-pyrroline (2-AP) has been widely reported as a key contributor to the popcorn-like aroma of fragrant rice (Oryza sativa). To gain a greater understanding of its contribution to the aroma in both fragrant and non-fragrant rice, sensory profiling was conducted with a trained panel to examine the sensory properties of six boiled rice samples, three fragrant and three non-fragrant varieties. The intensity of the popcorn note as an orthonasal odour, a retronasal flavour and as an after-effect was significantly higher in fragrant rice than in non-fragrant rice. However, panellists could not differentiate these popcorn attributes between the three different fragrant rice varieties. 2-AP was extracted from the boiled rice samples by headspace solid-phase microextraction and quantified by gas chromatography-mass spectrometry. 2-AP was below the limits of quantitation in non-fragrant varieties; however, gas chromatography-olfactometry of samples indicated the presence of 2-AP in both raw fragrant and non-fragrant rice varieties.


Assuntos
Odorantes/análise , Oryza/química , Pirróis/análise , Paladar , Cromatografia Gasosa-Espectrometria de Massas , Olfatometria , Pirróis/química , Pirróis/isolamento & purificação , Microextração em Fase Sólida
20.
Food Chem ; 329: 127032, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32505986

RESUMO

In this work, the effect of oxidation induced by hydroxyl radicals on the binding abilities of myofibrillar protein (MP) gels to aldehydes and ketones and their relationship with MP gel properties were investigated. Mild oxidation (0-0.2 mM H2O2) could induce partial unfolding of MP, thus slightly increasing the salt solubility of MP and enhancing the hardness of MP gels. MP suffering a higher oxidative attack could undergo a reduction in water-holding capacity, with increased mobility of water in MP gels. Oxidation could make MP gel more disordered. The ability of oxidised MP gels to bind to flavours decreased as the carbon chain length of the flavour compound increased. MP oxidation only significantly affected the binding of MP gels to hexanal, heptanal, and 2-octanone, while other flavour compounds were not affected.


Assuntos
Aromatizantes/química , Proteínas Musculares/química , Miofibrilas/química , Animais , Géis/química , Peróxido de Hidrogênio/química , Oxirredução , Solubilidade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA