Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928886

RESUMO

Chlorella vulgaris (C.V) is known for its high protein and nutrient contents and has been touted as a potential functional ingredient in food products. For this study, beef burgers were formulated with varying levels of Chlorella vulgaris fortification (0%, 0.5%, 1%, and 1.5% by weight). The nutritional composition, including proximate analysis and mineral content, was determined for each treatment group. The quality characteristics evaluated included thiobarbituric acid (TBA), total volatile base nitrogen (TVBN), pH, and total acidity. The study included extracting the active substances from Chlorella vulgaris using three solvents, 50% ethanol, 95% ethanol, and water, to evaluate the effect on the antimicrobial and antioxidant activity. The results showed that the water extract had the highest total phenolic content (183.5 mg gallic acid equivalent per gram) and the highest flavonoid content (54 mg quercetin per gram). The aqueous extract had the highest content of total antioxidants, followed by the 95% ethanol and 50% ethanol extracts. Meanwhile, the 50% ethanol extract showed the best antimicrobial activity, while the aqueous extract had less of an effect on Gram-positive bacteria and no effect on E. coli. For the burger treatments, at the end of the storage period, it was observed that the microbial load of the treatments decreased compared to the control, and there was a high stability in the total volatile base nitrogen (TVBN) values for the treatments compared to the control, reaching a value of 22.4 at month 5, which is well above the acceptable limit, indicating spoilage. The pH values were higher for all of the treatments, with a lower total acidity for all of the treatments compared to the control. In conclusion, utilizing Chlorella vulgaris algae as a natural preservative to extend the freshness of burgers is a sustainable and innovative approach to food preservation. By harnessing the power of this green superfood, we not only enhance the shelf life of our food products but also contribute to a healthier and more environmentally friendly food industry.

2.
Molecules ; 26(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34684694

RESUMO

Fish oil is the primary source of long-chain omega-3 fatty acids, which are important nutrients that assist in the prevention and treatment of heart disease and have many health benefits. It also contains vitamins that are lipid-soluble, such as vitamins A and D. This work aimed to determine how the wall material composition influenced the encapsulation efficiency and oxidative stability of omega fish oils in spray-dried microcapsules. In this study, mackerel, sardine waste oil, and sand smelt fish oil were encapsulated in three different wall materials (whey protein, gum Arabic (AG), and maltodextrin) by conventional spray-drying. The effect of the different wall materials on the encapsulation efficiency (EE), flowability, and oxidative stability of encapsulated oils during storage at 4 °C was investigated. All three encapsulating agents provided a highly protective effect against the oxidative deterioration of the encapsulated oils. Whey protein was found to be the most effective encapsulated agent comparing to gum Arabic and maltodextrin. The results indicated that whey protein recorded the highest encapsulation efficiency compared to the gum Arabic and maltodextrin in all encapsulated samples with EE of 71.71%, 68.61%, and 64.71% for sand smelt, mackerel, and sardine oil, respectively. Unencapsulated fish oil samples (control) recorded peroxide values (PV) of 33.19, 40.64, and 47.76 meq/kg oil for sand smelt, mackerel, and sardine oils after 35 days of storage, while all the encapsulated samples showed PV less than 10 in the same storage period. It could be concluded that all the encapsulating agents provided a protective effect to the encapsulated fish oil and elongated the shelf life of it comparing to the untreated oil sample (control). The results suggest that encapsulation of fish oil is beneficial for its oxidative stability and its uses in the production of functional foods.


Assuntos
Composição de Medicamentos/métodos , Ácidos Graxos Ômega-3/química , Óleos de Peixe/química , Goma Arábica/química , Polissacarídeos/química , Proteínas do Soro do Leite/química , Animais , Cápsulas , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA