Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Dairy Sci ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38369118

RESUMO

Through its influence on the gut microbiota, feeding of Saccharomyces cerevisiae fermentation products (SCFP) has been a successful strategy to enhance the health of dairy cows during periods of physiological stresses. Although production and metabolic outcomes from feeding SCFP are well-known, combined impacts on the ruminal microbiota and metabolome during gut barrier challenges remain unclear. To address this gap in knowledge, multiparous Holstein cows (97.1 ± 7.6 DIM; n = 8/group) fed a control diet (CON) or CON plus 19 g/d SCFP for 9 wk were subjected to a feed restriction (FR) challenge for 5 d, during which they were fed 40% of their ad-libitum intake from the 7 d before FR. DNA extracted from ruminal fluid was subjected to PacBio Full-Length 16S rRNA gene sequencing, RT-PCR of 12 major ruminal bacteria, and metabolomics analysis of up to 189 metabolites via GC-MS. High-quality amplicon sequence analyses were performed with Targeted Amplicon Diversity Analysis (TADA), MicrobiomeAnalyst, PICRUSt2, and STAMP software, while metabolomics data were analyzed via MetaboAnalyst 5.0. Ruminal fluid metabolites from the SCFP group exhibited a greater α diversity Chao 1 (P = 0.03) and Shannon indices (P = 0.05), and the PLS-DA analysis clearly discriminated metabolite profiles between dietary groups. The abundance of CPla_4_termite_group, Candidatus_Saccharimonas, Oribacterium, and Pirellula genus in cows fed SCFP was greater. In the SCFP group, concentrations of ethanolamine, 2-amino-4,6-dihydroxypyrimidine, glyoxylic acid, serine, threonine, cytosine, stearic acid, and pyrrole-2-carboxylic acid were greater in ruminal fluid. Both Fretibacterium and Succinivibrio abundance were positively correlated with metabolites across various biological processes: gamma-aminobutyric acid, galactose, butane-2,3-diol, fructose, 5-amino pentanoic acid, ß-aminoisobutyric acid, ornithine, malonic acid, 3-hydroxy-3-methylbutyric acid, hexanoic acid, heptanoic acid, cadaverine, glycolic acid, ß-alanine, 2-hydroxybutyric acid, methyl alanine, and alanine. In the SCFP group, compared with CON, the mean proportion of 14 predicted pathways based on metabolomics data was greater, while 10 predicted pathways were lower. Integrating metabolites and upregulated predicted enzymes (NADP+-dependent glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, serine: glyoxylate aminotransferase, and D-glycerate 3-kinase) indicated that the pentose phosphate pathway and photorespiration pathway were most upregulated by SCFP. Overall, SCFP during FR led to alterations in ruminal microbiota composition and key metabolic pathways. Among those, there was a shift from the tricarboxylic acid (TCA) cycle to the glyoxylate cycle and nitrogenous base production was enhanced.

3.
J Dairy Sci ; 107(3): 1685-1693, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37944812

RESUMO

Residual Feed Intake (RFI) is defined as the difference between measured and predicted intake. Understanding its biological regulators could benefit farm profit margins. The most-efficient animals (M-Eff) have observed intake smaller than predicted resulting in negative RFI, whereas the least-efficient (L-Eff) animals have positive RFI. Hence, this observational study aimed at retrospectively comparing the blood immunometabolic profile in calves with divergent RFI during the preweaning period. Twenty-two Italian Simmental calves were monitored from birth through 60 d of age. Calves received 3 L of colostrum from their respective dams. From 2 to 53 d of age, calves were fed a milk replacer twice daily, whereas from 54 to 60 d (i.e., weaning) calves were stepped down to only one meal in the morning. Calves had ad libitum access to concentrate and intakes were recorded daily. The measurement of BW and blood samples were performed at 0, 1, 7, 14, 21, 28, 35, 45, 54, and 60 d of age. Calves were ranked and categorized as M-Eff or L-Eff according to the median RFI value. Median RFI was -0.06 and 0.04 kg of DMI/d for M-Eff and L-Eff, respectively. No evidence for group differences was noted for colostrum and plasma IgG concentrations. Although growth rate was not different, as expected, (0.67 kg/d [95% CI = 0.57-0.76] for both L-Eff and M-Eff) throughout the entire preweaning period (0-60 d), starter intake was greater in L-Eff compared with M-Eff calves (+36%). Overall, M-Eff calves had a greater gain-to-feed ratio compared with L-Eff calves (+16%). Plasma ceruloplasmin, myeloperoxidase, and reactive oxygen metabolites concentrations were greater in L-Eff compared with M-Eff calves. Compared with L-Eff, M-Eff calves had an overall greater plasma concentration of globulin, and γ-glutamyl transferase (indicating a better colostrum uptake) and Zn at 1 d. Retinol and urea were overall greater in L-Eff. The improved efficiency in nutrient utilization observed in M-Eff was paired with a lower grade of oxidative stress and systemic inflammation. L-Eff may have had greater energy expenditure to support the activation of the immune system.


Assuntos
Ingestão de Alimentos , Animais , Bovinos , Estudos Retrospectivos , Desmame , Transporte Biológico , Itália
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37721866

RESUMO

Feeding a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during periods of metabolic stress is beneficial to the health of dairy cows partially through its effect on the gut microbiota. Whether SCFP alters the ileal microbiota in lactating cows during intestinal challenges induced by feed restriction (FR) is not known. We used 16S rRNA sequencing to assess if feeding SCFP during FR to induce gut barrier dysfunction alters microbiota profiles in the ileum. The mRNA abundance of key genes associated with tissue structures and immunity was also detected. Multiparous cows (97.1 ±â€…7.6 days in milk (DIM); n = 7 per treatment) fed a control diet or the control plus 19 g/d NutriTek for 9 wk were subjected to an FR challenge for 5 d, during which they were fed 40% of their ad libitum intake from the 7 d before FR. All cows were slaughtered at the end of FR. DNA extracted from ileal digesta was subjected to PacBio Full-Length 16S rRNA gene sequencing. High-quality amplicon sequence analyses were performed with Targeted Amplicon Diversity Analysis and MicrobiomeAnalyst. Functional analysis was performed and analyzed using PICRUSt and STAMP. Feeding SCFP did not (P > 0.05) alter dry matter intake, milk yield, or milk components during FR. In addition, SCFP supplementation tended (P = 0.07) to increase the relative abundance of Proteobacteria and Bifidobacterium animalis. Compared with controls, feeding SCFP increased the relative abundance of Lactobacillales (P = 0.03). Gluconokinase, oligosaccharide reducing-end xylanase, and 3-hydroxy acid dehydrogenase were among the enzymes overrepresented (P < 0.05) in response to feeding SCFP. Cows fed SCFP had a lower representation of adenosylcobalamin biosynthesis I (early cobalt insertion) and pyrimidine deoxyribonucleotides de novo biosynthesis III (P < 0.05). Subsets of the Firmicutes genus, Bacteroidota phylum, and Treponema genus were correlated with the mRNA abundance of genes associated with ileal integrity (GCNT3, GALNT5, B3GNT3, FN1, ITGA2, LAMB2) and inflammation (AOX1, GPX8, CXCL12, CXCL14, CCL4, SAA3). Our data indicated that the moderate FR induced dysfunction of the ileal microbiome, but feeding SCFP increased the abundance of some beneficial gut probiotic bacteria and other species related to tissue structures and immunity.


Stressors, including limited access to feed, heat stress, transportation, and disease are factors that reduce integrity of the gut epithelial barrier in livestock. Feeding Saccharomyces cerevisiae fermentation products (SCFP) mitigated immunological, aflatoxin, and subclinical mastitis challenges, heat stress, and grain-based subacute ruminal acidosis indicating it also could alleviate gut damage. Microbiota profiling of ileal epithelium using 16S rRNA sequencing and bioinformatics revealed that Lactobacillales and Animalis abundance was greater in cows fed SCFP versus controls during a 5-d feed restriction to induce intestinal dysfunction. Some genera of Firmicutes, Bacteroidota phylum, and Treponema genus were correlated with mRNA abundance of genes associated with integrity and inflammation of ileal epithelium. Thus, feeding SCFP can increase the abundance of beneficial bacteria during a gut challenge.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Feminino , Bovinos , Animais , Suplementos Nutricionais/análise , Lactação/fisiologia , Saccharomyces cerevisiae/metabolismo , Fermentação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Dieta/veterinária , Leite/metabolismo , RNA Mensageiro/metabolismo , Ração Animal/análise , Rúmen/metabolismo
5.
Animals (Basel) ; 13(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570241

RESUMO

A synbiotic composed of alginate nanoencapsulated prebiotic (pomegranate peel phytogenics) and multi-species probiotics (Lactococcus lactis, Lactobacillus plantarum, Lactobacillus paracasei, and Saccharomyces cerevisiae) has been developed as a potential eco-friendly alternative to antibiotics. The physicochemical properties of the encapsulated synbiotic were evaluated, and its gastric and storage tolerance, as well as its antioxidant and antimicrobial activity, were tested and compared to that of the non-encapsulated synbiotic (free synbiotic). The results showed that the prebiotic pomegranate peel ethanolic extract contained seven phenolic compounds, with cinnamic being the most abundant (13.26 µL/mL). Sodium alginate-CaCl2 nanocapsules were effective in encapsulating 84.06 ± 1.5% of the prebiotic's phenolic compounds and 98.85 ± 0.57% of the probiotics. The particle size of the alginate-CaCl2 nanoencapsulated synbiotic was 544.5 nm, and the polydispersity index and zeta potential values were 0.593 and -12.3 mV, respectively. Thermogravimetric analysis showed that the alginate-CaCl2 nanoencapsulated synbiotic had high thermal stability at high temperatures, with only 2.31% of its weight being lost within the temperature range of 70-100 °C. The count of viable probiotics in the nanoencapsulated synbiotic was significantly higher than that in the free synbiotic after exposure to gastric acidity and storage for six months at room temperature. The percent inhibition values of the nanoencapsulated synbiotic and ascorbic acid (as a standard antioxidant) were comparable and significantly greater than those of the free synbiotic. The half-maximal inhibitory concentrations (IC50) of the nanoencapsulated synbiotic and ascorbic acid were significantly lower than those of the free synbiotic (3.96 ± 0.42 µg/mL and 4.08 ± 0.79 µg/mL for nanoencapsulated synbiotic and ascorbic acid, respectively, vs. 65.75 ± 2.14 µg/mL for free synbiotic). The nanoencapsulated synbiotic showed the highest significant antimicrobial activity against Escherichia coli (ATCC 8739). Both the nanoencapsulated and free synbiotics showed antimicrobial activity against Staphylococcus aureus (ATCC 6538), similar to that of gentamicin, although the nanoencapsulated synbiotic showed significantly higher inhibition activity compared to the free synbiotic. The nanoencapsulated synbiotic showed antimicrobial activity comparable to gentamicin against Pseudomonas aeruginosa (ATCC 90274), whereas the free synbiotic showed the least antimicrobial activity (p < 0.05). Both synbiotics showed significantly higher antimicrobial activity against Salmonella typhi (ATCC 6539) than gentamicin. Both synbiotics showed antifungal activity against Aspergillus niger and Aspergillus flavus, with a stronger effect observed for the nanoencapsulated synbiotic. However, the activity of both synbiotics was significantly lower than that of fluconazole (an antifungal drug).

6.
Animals (Basel) ; 13(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37443904

RESUMO

Vitamin B12 plays a role in the remethylation of homocysteine to Met, which then serves as a substrate for Met adenosyltransferase (MAT) to synthesize S-adenosylmethionine (SAM). We investigated effects of feeding two cobalt sources [Co-glucoheptonate (CoPro) or CoPectin, Zinpro Corp.], an experimental ruminally-available source of folic acid (FOA), and rumen-protected Met (RPM) on performance and hepatic one-carbon metabolism in peripartal Holstein cows. From -30 to 30 d around calving, 72 multiparous cows were randomly allocated to: CoPro, CoPro + FOA, CoPectin + FOA, or CoPectin + FOA + RPM. The Co treatments delivered 1 mg Co/kg of DM (CoPro or CoPectin), each FOA group received 50 mg/d FOA, and RPM was fed at 0.09% of DM intake (DMI). Milk yield and DMI were not affected. Compared with other groups, the percentage of milk protein was greater after the second week of lactation in CoPectin + FOA + RPM. Compared with CoPro or CoPro + FOA, feeding CoPectin + FOA or CoPectin + FOA + RPM led to a greater activity of MAT at 7 to 15 d postcalving. For betaine-homocysteine S-methyltransferase, CoPro together with CoPectin + FOA + RPM cows had greater activity at 7 and 15 d than CoPro + FOA. Overall, supplying FOA with CoPectin or CoPectin plus RPM may enhance S-adenosylmethionine synthesis via MAT in the liver after parturition. As such, these nutrients may impact methylation reactions and liver function.

7.
Vet Res Commun ; 47(1): 1-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35781172

RESUMO

Livestock is an essential life commodity in modern agriculture involving breeding and maintenance. The farming practices have evolved mainly over the last century for commercial outputs, animal welfare, environment friendliness, and public health. Modifying genetic makeup of livestock has been proposed as an effective tool to create farmed animals with characteristics meeting modern farming system goals. The first technique used to produce transgenic farmed animals resulted in random transgene insertion and a low gene transfection rate. Therefore, genome manipulation technologies have been developed to enable efficient gene targeting with a higher accuracy and gene stability. Genome editing (GE) with engineered nucleases-Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) regulates the targeted genetic alterations to facilitate multiple genomic modifications through protein-DNA binding. The application of genome editors indicates usefulness in reproduction, animal models, transgenic animals, and cell lines. Recently, CRISPR/Cas system, an RNA-dependent genome editing tool (GET), is considered one of the most advanced and precise GE techniques for on-target modifications in the mammalian genome by mediating knock-in (KI) and knock-out (KO) of several genes. Lately, CRISPR/Cas9 tool has become the method of choice for genome alterations in livestock species due to its efficiency and specificity. The aim of this review is to discuss the evolution of engineered nucleases and GETs as a powerful tool for genome manipulation with special emphasis on its applications in improving economic traits and conferring resistance to infectious diseases of animals used for food production, by highlighting the recent trends for maintaining sustainable livestock production.


Assuntos
Sistemas CRISPR-Cas , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Animais , Sistemas CRISPR-Cas/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases de Dedos de Zinco/genética , Edição de Genes/veterinária , Edição de Genes/métodos , Mamíferos/genética , Gado/genética
8.
Front Microbiol ; 13: 1022783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466637

RESUMO

Starting phase of laying chicken life is the building stone for rearing and production stages. Since, fecal microbial transplantation (FMT) regulates the gut microbial diversity and affects the productive performance of the bird. The aim of this study is to evaluate the effect of FMT from feed-efficient broiler chicken could program the diversity of gut microbiota and growth of recipient native slow growing egg-laying chicks. For this, a total of 150 (one-day-old) Jing Hong chicks were randomly assigned into two groups, each group consisted of 5 replicates (n = 15 bird/ replicate). The control group (CON) and FMT recipient birds (FMT) fed on basal diet, the FMT group received an oral daily dose of FMT prepared from Cobb-500 chickens. The FMT performed from the 1d to 28d of age, through the experimental period, feed intake and body weight were recorded weekly. At the end of a 28-day trial, carcass traits were assessed and cecal samples were collected for microbiome assessment via 16S rRNA-based metagenomic analysis to characterize the diversity and functions of microbial communities. The data were statistically analyzed using R software. Body weight and body weight gain increased, and FCR decreased (p = 0.01) in FMT group. The relative abundance of Firmicutes and the Firmicutes/Bacteroidetes (F/B) ratio were increased due to FMT administration (p = 0.01). A higher relative abundance of Lactobacillus, Lactococcus, and Bifidobacterium were presented in the FMT group. Meanwhile, Enterococcus, Helicobacter, and Bacteroides were more abundant in the CON group (p < 0.01). Kyoto encyclopedia of genes and genomes (KEGG) pathways for microbial functions regarding amino acid metabolism, secondary metabolites biosynthesis, carbohydrate metabolism, energy metabolism, and enzyme families, cofactors, and vitamins were significantly annotated in the FMT group. Overall, FMT administration from the donor of highly feed-efficient broilers improved weight gain by reshaping a distinct gut microbiome, which may be related to the metabolism and health in the recipients laying chicks, providing new insight on the application of the FMT technique for early life programming of laying chickens.

10.
Front Immunol ; 13: 907529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844612

RESUMO

Human milk harbors complex carbohydrates, including human milk oligosaccharides (HMOs), the third most abundant component after lactose and lipids. HMOs have been shown to impact intestinal microbiota, modulate the intestinal immune response, and prevent pathogenic bacterial binding by serving as decoy receptors. However, the direct effect of HMOs on intestinal function and immunity remains to be elucidated. To address this knowledge gap, 21-day-old germ-free mice (C57BI/6) were orally gavaged with 15 mg/day of pooled HMOs for 7 or 14 days and euthanized at day 28 or 35. A set of mice was maintained until day 50 to determine the persistent effects of HMOs. Control groups were maintained in the isolators for 28, 35, or 50 days of age. At the respective endpoints, intestinal tissues were subjected to histomorphometric and transcriptomic analyses, while the spleen and mesenteric lymph nodes (MLNs) were subjected to flow cytometric analysis. The small intestine (SI) crypt was reduced after HMO treatment relative to control at days 28 and 35, while the SI villus height and large intestine (LI) gland depth were decreased in the HMO-treated mice relative to the control at day 35. We report significant HMO-induced and location-specific gene expression changes in host intestinal tissues. HMO treatment significantly upregulated genes involved in extracellular matrix, protein ubiquitination, nuclear transport, and mononuclear cell differentiation. CD4+ T cells were increased in both MLNs and the spleen, while CD8+ T cells were increased in the spleen at day 50 in the HMO group in comparison to controls. In MLNs, plasma cells were increased in HMO group at days 28 and 35, while in the spleen, only at day 28 relative to controls. Macrophages/monocytes and neutrophils were lower in the spleen of the HMO group at days 28, 35, and 50, while in MLNs, only neutrophils were lower at day 50 in the 14-day HMO group. In addition, diphtheria toxoid and tetanus toxoid antibody-secreting cells were higher in HMO-supplemented group compared to controls. Our data suggest that HMOs have a direct effect on gastrointestinal tract metabolism and the immune system even in the absence of host microbiota.


Assuntos
Leite Humano , Oligossacarídeos , Animais , Expressão Gênica , Humanos , Imunidade , Intestinos/microbiologia , Camundongos , Oligossacarídeos/farmacologia
11.
Front Microbiol ; 13: 801854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401465

RESUMO

Exclusive breastfeeding is recommended to newborns during the first 6 months of life, whereas dairy-based infant formula is an alternative nutrition source offered to infants. Several studies demonstrated that breastfed infants have a different gut bacterial composition relative to formula-fed infants. In addition, animal models have shown that human milk (HM)-fed piglets had a distinct intestinal bacterial composition compared with milk formula (MF)-fed piglets. However, the gut fungal composition and the interactions with the bacterial community in breastfed compared with formula-fed infants remain to be investigated. In an attempt to evaluate such differences, we used an animal model to perform a shotgun metagenomics analysis on the cecal and distal colon contents of neonatal piglets fed with pasteurized HM or a dairy-based infant formula (MF) during the first 21 days of life. At postnatal day 21 (PND 21), a subset of piglets from each diet group (n = 11 per group) was euthanized. The remaining piglets in each group were weaned to a solid diet and euthanized at PND 51 (n = 13 per group). Large intestine contents (i.e., cecum and distal colon) were subjected to shotgun metagenomics analysis. The differential taxonomic composition of bacteria and fungi and the predicted functional gene profiling were evaluated. Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria are the most abundant bacterial phyla observed in piglets at PND 21 and PND 51. In the large intestine at PND 21 and PND 51, Proteobacteria phylum was significantly higher in MF-fed group, and species Burkholderiales bacterium of phyla was significantly higher in MF group relative to HM group. In addition, in HM group, several Lactobacillus spp. and Bacteroides spp. were higher relative to MF group in the large intestine at PND 21 and PND 51. Fungal genus Aspergillus was higher in MF, whereas Malassezia was lower relative to HM group. Persistent effects of the neonatal diets were observed at PND 51, where alpha- and beta-diversity differences were detected for bacterial and fungal species in the large intestine. Overall, our findings indicate that neonatal diet affects the large intestinal microbial community during the exclusive milk-feeding period, as well as after the introduction of the complementary food.

12.
J Dairy Sci ; 105(6): 4971-4986, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35379466

RESUMO

Residual feed intake (RFI) is a moderately heritable trait of feed efficiency in dairy cows. The main objective of the present study was to assess potential differences in the ruminal microbiome, milk fatty acid (FA) composition, and plasma concentrations of glucose, nonesterified fatty acids (NEFA), and ß-hydroxybutyrate between the most (M-EFF) and the least efficient (L-EFF) dairy cows during early lactation. Forty-seven multiparous Holstein dairy cows with daily ad libitum access to a total mixed ration from 30 d before calving to 30 d in milk were used. Cows were retrospectively classified into M-EFF (i.e., low RFI, n = 29) and L-EFF (high RFI, n = 18) based on a linear regression model. Ruminal digesta and milk samples were collected from each cow at 15 and 30 d in milk for microbiome analysis using 16S rRNA gene sequencing. Microbiome sequencing data were analyzed with the QIIME 2 platform (http://qiime.org/), whereas the microbiome statistical analyses and visual explorations were performed using the web-based MicrobiomeAnalyst platform. Milk FA composition was measured via gas chromatography-mass spectrometry. The statistical model used in SAS 9.4 (SAS Institute Inc.) included RFI, time, and their interactions as fixed effects. The cor() function in R programming was used to determine Pearson correlations between relative abundance of significant bacteria and milk FA. Overall, daily milk yield did not differ due to RFI and averaged 42 ± 1.6 kg for L-EFF and 43 ± 1.3 kg for M-EFF cows. However, M-EFF cows had lower overall dry matter intake (14.9 ± 0.5 kg/d) compared with L-EFF cows (19.2 ± 0.6 kg/d). No incidence of clinical disease was recorded for cows in the study. Compared with L-EFF, overall glucose concentration was lower, whereas NEFA and ß-hydroxybutyrate concentrations were greater in M-EFF cows. Ruminal digesta from both RFI groups had similar bacterial composition, but differed in the relative abundance of some bacteria. Compared with L-EFF, M-EFF cows had greater relative abundance of Lachnospiraceae, Lachnoclostridium, Papillibacter, Desulfovibrio, Sphaerochaeta, Acetobacter, and Histophilus. In contrast, relative abundance of Bifidobacterium, Ruminiclostridium, Prevotellaceae, and Erysipelotrichaceae bacterium was lower in M-EFF cows. Compared with L-EFF, M-EFF cows had greater proportions of long-chain monounsaturated FA, including 16:1 trans-9, 16:1 cis-9, 17:1 trans-10, 17:1 cis-10, 18:1 cis-9, 18:1 cis-11, whereas proportions of medium-chain saturated and 16:0 were lower in M-EFF. Acetate-producing bacteria (Sphaerochaeta and Acetobacter) were positively and significantly correlated (r ≥ 0.24) with concentrations of 16:1 cis-9 and 17:1 cis-10, whereas Prevotellaceae was significantly and negatively correlated (r = -0.25) with these FA. Butyrate-producing bacterium (Papillibacter) had a significant negative correlation (r = -0.27) with concentration of 15:0. Overall, data suggested that feed-efficient cows have unique profiles of ruminal microbiota, some of which are correlated with concentrations of milk FA during early lactation.


Assuntos
Microbiota , Leite , Ácido 3-Hidroxibutírico/análise , Ração Animal/análise , Animais , Bactérias , Bovinos , Dieta/veterinária , Ingestão de Alimentos , Ácidos Graxos/análise , Ácidos Graxos não Esterificados/análise , Feminino , Glucose/análise , Lactação , Leite/química , RNA Ribossômico 16S/análise , Estudos Retrospectivos , Rúmen/microbiologia
14.
Front Nutr ; 8: 736270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760909

RESUMO

Hindgut microorganisms in newborn calves play an important role in the development of immunity and metabolism, and optimization of performance. However, knowledge of the extent to which microbiome colonization of the calf intestine is dependent on maternal characteristics is limited. In this study, placenta, umbilical cord, amniotic fluid, colostrum, cow feces, and calf meconium samples were collected from 6 Holstein cow-calf pairs. Microbial composition was analyzed by 16S rRNA gene high-throughput sequencing, and maternal transfer characteristics assessed using SourceTracker based on Gibbs sampling to fit the joint distribution using the mean proportions of each sample with meconium as the "sink" and other sample types as different "sources." Alpha and beta diversity analyses revealed sample type-specific microbiome features: microbial composition of the placenta, umbilical cord, amniotic fluid, colostrum, and calf feces were similar, but differed from cow feces (p < 0.05). Compared with profiles of meconium vs. placenta, meconium vs. umbilical cord, and meconium vs. colostrum, differences between the meconium and amniotic fluid were most obvious. SourceTracker analysis revealed that 23.8 ± 2.21% of the meconium OTUs matched those of umbilical cord samples, followed by the meconium-placenta pair (15.57 ± 2.2%), meconium-colostrum pair (14.4 ± 1.9%), and meconium-amniotic fluid pair (11.2 ± 1.7%). The matching ratio between meconium and cow feces was the smallest (10.5 ± 1%). Overall, our data indicated that the composition of the meconium microflora was similar compared with multiple maternal sites including umbilical cord, placenta, colostrum, and amniotic fluid. The umbilical cord microflora seemed to contribute the most to colonization of the fecal microflora of calves. Bacteria with digestive functions such as cellulose decomposition and rumen fermentation were mainly transmitted during the maternal transfer process.

15.
Front Immunol ; 12: 604080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643310

RESUMO

Exclusive human milk feeding of the newborn is recommended during the first 6 months of life to promote optimal health outcomes during early life and beyond. Human milk contains a variety of bioactive factors such as hormones, cytokines, leukocytes, immunoglobulins, lactoferrin, lysozyme, stem cells, human milk oligosaccharides (HMOs), microbiota, and microRNAs. Recent findings highlighted the potential importance of adding HMOs into infant formula for their roles in enhancing host defense mechanisms in neonates. Therefore, understanding the roles of human milk bioactive factors on immune function is critical to build the scientific evidence base around breastfeeding recommendations, and to enhance positive health outcomes in formula fed infants through modifications to formulas. However, there are still knowledge gaps concerning the roles of different milk components, the interactions between the different components, and the mechanisms behind health outcomes are poorly understood. This review aims to show the current knowledge about HMOs, milk microbiota, immunoglobulins, lactoferrin, and milk microRNAs (miRNAs) and how these could have similar mechanisms of regulating gut and microbiota function. It will also highlight the knowledge gaps for future research.


Assuntos
Aleitamento Materno , Trato Gastrointestinal/metabolismo , Homeostase , Imunidade , Leite Humano/imunologia , Leite Humano/metabolismo , Biomarcadores , Desenvolvimento Infantil , Resistência à Doença/imunologia , Microbioma Gastrointestinal , Trato Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunomodulação , Lactente , Recém-Nascido , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia
16.
mSystems ; 6(1)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563783

RESUMO

The impact of human milk (HM) feeding compared with cow's milk formula (MF) feeding on small intestinal and circulatory metabolome patterns has not been fully investigated. Therefore, 2-day-old male piglets were fed HM or MF (n = 26/group) from postnatal day 2 (PND 2) through 21 and were weaned to a solid diet until PND 51. The small intestine (gastrointestinal [GI]) contents, serum, and urine were collected from subsets of piglets at PND 21 and PND 51. Samples were subjected to primary metabolomics analyses at the West Coast Metabolomics Center, UC Davis. The metabolome data assessment and the statistical analyses were performed with MetaboAnalyst software. Compared with MF feeding, at PND 21, HM feeding resulted in a higher abundance of fucose in the jejunum and urine and a greater concentration of myo-inositol in serum. In HM-fed piglets, 1,5-anhydroglucitol was higher in the duodenum, serum, and urine at PND 21. Additionally, the HM group had higher levels of urinary kynurenic acid at PND 21. Correlations between bacterial genera and altered metabolites in ileum revealed that Turicibacter sp. and Campylobacter sp. were positively correlated with maltotriose and panose at PND 21, while ileal Campylobacter sp. was negatively correlated with fumaric acid. At PND 51, no significant metabolites were identified between HM and MF diet groups. The metabolites associated with the neonatal diets may serve as the substrates and signals that contribute to the physiological effects in HM and MF during infancy, with a subset reflecting diet-associated differences in microbial metabolism and ecology.IMPORTANCE Exclusive HM feeding for newborns is recommended at least for the first 6 months of life. However, when breastfeeding is not possible, MF is recommended as a substitute. Due to the challenges associated with sample collection from infants fed HM or MF, their gut metabolism is poorly understood. Thus, an established piglet model from our team was used to determine the metabolite profile in relation to host, diet, and microbiota. The current study is the first to provide novel insights across the small intestine metabolism and its association with circulatory metabolites in the HM group relative to the MF group at the weaning and postweaning period. Data also demonstrate that during the neonatal period, diet, host, and microbial metabolism contribute to the lumen and circulatory metabolite profile. Furthermore, small intestinal lumen metabolome can be tracked in the urine as a biomarker of dietary differences, which would be a useful tool for clinical interventions.

18.
Adv Nutr ; 12(1): 59-70, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32838428

RESUMO

Human breast milk (HM) contains multiple bioactive substances determining its impact on children's health. Extracellular vesicles (EVs) are a heterogeneous group of secreted nanoparticles that are present in HM and may be partially responsible for its beneficial effects. The precise roles and content of EVs in HM remain largely unknown. To examine this, we performed a short narrative review on the literature focusing on HM EVs to contextualize the available data, followed by a scoping review of MEDLINE and Embase databases. We identified 424 nonduplicate citations with 19 original studies included. In this perspective, we summarize the evidence around HM EVs, highlight some theoretical considerations based on existing evidence, and provide an overview of some challenges associated with the complexity and heterogeneity of EV research. We consider how the existing data from HM studies conform to the minimal information for studies of EVs (MISEV) guidelines. Across the studies a variety of research methods were utilized involving both bench-based and translational methods, and a range of different EV contents were examined including RNA, proteins, and glycopeptides. We observed a variety of health outcomes in these studies, including allergy and atopy, necrotizing enterocolitis, and HIV. While some promising results have been demonstrated, the heterogeneity in outcomes of interest, methodological limitations, and relatively small number of studies in the field make comparison between studies or further translational work problematic. To date, no studies have examined normative values of HM EVs in a large, diverse population or with respect to potentially important influencing factors such as timing (hind- vs. foremilk), stage (colostrum vs. mature milk), and infant age (preterm vs. term), which makes extrapolation from bench or "basic" research impossible. Future research should focus on addressing the current inadequacies in the literature and utilize MISEV guidelines to inform study design.


Assuntos
Enterocolite Necrosante , Vesículas Extracelulares , Animais , Criança , Saúde da Criança , Colostro , Feminino , Humanos , Recém-Nascido , Leite Humano , Gravidez
19.
Front Immunol ; 11: 607609, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365033

RESUMO

The impact of human milk (HM) or dairy milk-based formula (MF) on the large intestine's metabolome was not investigated. Two-day old male piglets were randomly assigned to HM or MF diet (n = 26/group), from postnatal day (PND) 2 through 21 and weaned to a solid diet until PND 51. Piglets were euthanized at PND 21 and PND 51, luminal contents of the cecum, proximal (PC) and distal colons (DC), and rectum were collected and subjected to metabolomics analysis. Data analyses were performed using Metaboanalyst. In comparison to MF, the HM diet resulted in higher levels of fatty acids in the lumen of the cecum, PC, DC, and rectum at PND 21. Glutamic acid was greater in the lumen of cecum, PC, and DC relative to the MF group at PND 21. Also, spermidine was higher in the DC and rectal contents of HM relative to MF at PND 21. MF diet resulted in greater abundances of amino acids in the cecal lumen relative to HM diet at PND 21. Additionally, several sugar metabolites were higher in various regions of the distal gut of MF fed piglets relative to HM group at PND 21. In contrast, at PND 51, in various regions there were higher levels of erythritol, maltotriose, isomaltose in HM versus MF fed piglets. This suggests a post weaning shift in sugar metabolism that is impacted by neonatal diet. The data also suggest that infant diet type and host-microbiota interactions likely influence the lower gut metabolome.


Assuntos
Alimentação com Mamadeira , Metabolismo Energético , Fórmulas Infantis , Intestino Grosso/metabolismo , Metaboloma , Leite Humano/metabolismo , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Animais Lactentes , Bactérias/metabolismo , Extração de Leite , Microbioma Gastrointestinal , Humanos , Recém-Nascido , Intestino Grosso/microbiologia , Masculino , Metabolômica , Estado Nutricional , Valor Nutritivo , Sus scrofa , Desmame
20.
mSystems ; 5(4)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753508

RESUMO

Exclusive breastfeeding impacts the intestinal microbiome and is associated with a better immune function than is seen with milk formula (MF) feeding in infants and yet with mechanisms poorly defined. The porcine model was used to evaluate the impact of MF on ileum microbial communities and gene expression relative to human milk (HM)-fed piglets. Fifty-two Dutch Landrace male piglets were fed an isocaloric diet of either HM (n = 26) or MF (n = 26) from day 2 through day 21 of age and weaned to a solid diet until day 51. Eleven piglets from each group were euthanized at day 21, while the remaining piglets (HM, n = 15; MF, n = 15) were euthanized at day 51 to collect ileal epithelium (EP) scrapings and ileal (IL) tissues. The epithelial mucosa was subjected to shotgun metagenome sequencing, and EP and IL tissues were used for transcriptome analysis. On day 21, transcriptome data revealed that the levels of pathways involved in inflammation and apoptosis were significantly higher in MF piglets than in HM piglets, whereas the levels of tight junctions and pathogen detection systems were lower in MF piglets than in HM piglets. The MF impacts on the small intestine were maintained over the postweaning period (day 51) as indicated by higher levels of Dialister invisus bacteria and higher levels of expression of genes associated with inflammation and apoptosis pathways relative to HM group. The current study demonstrated that MF might impact local intestinal inflammation, apoptosis, and tight junctions and might suppress pathogen recognition in the small intestine compared with HM.IMPORTANCE Exclusive human milk (HM) breastfeeding for the first 6 months of age in infants is recommended to improve health outcomes during early life and beyond. When women are unable to provide sufficient HM, milk formula (MF) is often recommended as a complementary or alternative source of nutrition. Previous studies in piglets demonstrated that MF alters the gut microbiome and induces inflammatory cytokine production. The links between MF feeding, gut microbiome, and inflammation status are unclear due to challenges associated with the collection of intestinal samples from human infants. The current report provides the first insight into MF-microbiome-inflammation connections in the small intestine compared with HM feeding using a porcine model. The present results showed that, compared with HM, MF might impact immune function through the induction of ileal inflammation, apoptosis, and tight junction disruptions and likely compromised immune defense against pathogen detection in the small intestine relative to piglets that were fed HM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...