Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 13(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064996

RESUMO

(1) Background: Whey protein lowers postprandial blood glucose in health and type 2 diabetes, by stimulating insulin and incretin hormone secretion and slowing gastric emptying. The branched-chain amino acids, leucine, isoleucine and valine, abundant in whey, may mediate the glucoregulatory effects of whey. We investigated the comparative effects of intragastric administration of leucine, isoleucine and valine on the plasma glucose, C-peptide and glucagon responses to and gastric emptying of a mixed-nutrient drink in healthy men. (2) Methods: 15 healthy men (27 ± 3 y) received, on four separate occasions, in double-blind, randomised fashion, either 10 g of leucine, 10 g of isoleucine, 10 g of valine or control, intragastrically, 30 min before a mixed-nutrient drink. Plasma glucose, C-peptide and glucagon concentrations were measured before, and for 2 h following, the drink. Gastric emptying of the drink was quantified using 13C-acetate breath-testing. (3) Results: Amino acids alone did not affect plasma glucose or C-peptide, while isoleucine and valine, but not leucine, stimulated glucagon (p < 0.05), compared with control. After the drink, isoleucine and leucine reduced peak plasma glucose compared with both control and valine (all p < 0.05). Neither amino acid affected early (t = 0-30 min) postprandial C-peptide or glucagon. While there was no effect on overall gastric emptying, plasma glucose at t = 30 min correlated with early gastric emptying (p < 0.05). (4) Conclusion: In healthy individuals, leucine and isoleucine lower postprandial blood glucose, at least in part by slowing gastric emptying, while valine does not appear to have an effect, possibly due to glucagon stimulation.


Assuntos
Aminoácidos de Cadeia Ramificada/farmacologia , Glicemia/metabolismo , Peptídeo C/sangue , Esvaziamento Gástrico/efeitos dos fármacos , Glucagon/sangue , Isoleucina/farmacologia , Leucina/farmacologia , Valina/farmacologia , Adulto , Diabetes Mellitus Tipo 2 , Método Duplo-Cego , Polipeptídeo Inibidor Gástrico/sangue , Humanos , Insulina , Masculino , Pessoa de Meia-Idade , Período Pós-Prandial/efeitos dos fármacos , Proteínas do Soro do Leite/farmacologia , Adulto Jovem
2.
Nutr Diabetes ; 11(1): 3, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33414406

RESUMO

BACKGROUND: The rate of gastric emptying and glucoregulatory hormones are key determinants of postprandial glycaemia. Intragastric administration of L-tryptophan slows gastric emptying and reduces the glycaemic response to a nutrient drink in lean individuals and those with obesity. We investigated whether tryptophan decreases postprandial glycaemia and slows gastric emptying in type 2 diabetes (T2D). METHODS: Twelve men with T2D (age: 63 ± 2 years, HbA1c: 49.7 ± 2.5 mmol/mol, BMI: 30 ± 1 kg/m2) received, on three separate occasions, 3 g ('Trp-3') or 1.5 g ('Trp-1.5') tryptophan, or control (0.9% saline), intragastrically, in randomised, double-blind fashion, 30 min before a mixed-nutrient drink (500 kcal, 74 g carbohydrates), containing 3 g 3-O-methyl-D-glucose (3-OMG) to assess glucose absorption. Venous blood samples were obtained at baseline, after tryptophan, and for 2 h post-drink for measurements of plasma glucose, C-peptide, glucagon and 3-OMG. Gastric emptying of the drink was quantified using two-dimensional ultrasound. RESULTS: Tryptophan alone stimulated C-peptide (P = 0.002) and glucagon (P = 0.04), but did not affect fasting glucose. In response to the drink, Trp-3 lowered plasma glucose from t = 15-30 min and from t = 30-45 min compared with control and Trp-1.5, respectively (both P < 0.05), with no differences in peak glucose between treatments. Gastric emptying tended to be slower after Trp-3, but not Trp-1.5, than control (P = 0.06). Plasma C-peptide, glucagon and 3-OMG increased on all days, with no major differences between treatments. CONCLUSIONS: In people with T2D, intragastric administration of 3 g tryptophan modestly slows gastric emptying, associated with a delayed rise, but not an overall lowering of, postprandial glucose.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Esvaziamento Gástrico/efeitos dos fármacos , Triptofano/administração & dosagem , 3-O-Metilglucose/sangue , Idoso , Bebidas , Peptídeo C/sangue , Diabetes Mellitus Tipo 2/sangue , Método Duplo-Cego , Vias de Administração de Medicamentos , Glucagon/sangue , Glucose/metabolismo , Humanos , Insulina/sangue , Absorção Intestinal , Masculino , Pessoa de Meia-Idade , Nutrientes , Obesidade/tratamento farmacológico , Período Pós-Prandial
3.
Diabetes Res Clin Pract ; 171: 108618, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33310174

RESUMO

AIMS: In healthy individuals, intragastric administration of the branched-chain amino acids, leucine and isoleucine, diminishes the glycaemic response to a mixed-nutrient drink, apparently by stimulating insulin and slowing gastric emptying, respectively. This study aimed to evaluate the effects of leucine and isoleucine on postprandial glycaemia and gastric emptying in type-2 diabetes mellitus (T2D). METHODS: 14 males with T2D received, on 3 separate occasions, in double-blind, randomised fashion, either 10 g leucine, 10 g isoleucine or control, intragastrically 30 min before a mixed-nutrient drink (500 kcal; 74 g carbohydrates, 18 g protein, 15 g fat). Plasma glucose, insulin and glucagon were measured from 30 min pre- until 120 min post-drink. Gastric emptying of the drink was also measured. RESULTS: Leucine and isoleucine stimulated insulin, both before and after the drink (all P < 0.05; peak (mU/L): control: 70 ± 15; leucine: 88 ± 17; isoleucine: 74 ± 15). Isoleucine stimulated (P < 0.05), and leucine tended to stimulate (P = 0.078), glucagon before the drink, and isoleucine stimulated glucagon post-drink (P = 0.031; peak (pg/mL): control: 62 ± 5; leucine: 70 ± 9; isoleucine: 69 ± 6). Neither amino acid affected gastric emptying or plasma glucose (peak (mmol/L): control: 12.0 ± 0.5; leucine: 12.5 ± 0.7; isoleucine: 12.0 ± 0.6). CONCLUSIONS: In contrast to health, in T2D, leucine and isoleucine, administered intragastrically in a dose of 10 g, do not lower the glycaemic response to a mixed-nutrient drink. This finding argues against a role for 'preloads' of either leucine or isoleucine in the management of T2D.


Assuntos
Aminoácidos de Cadeia Ramificada/uso terapêutico , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/sangue , Esvaziamento Gástrico/efeitos dos fármacos , Isoleucina/uso terapêutico , Leucina/uso terapêutico , Período Pós-Prandial/efeitos dos fármacos , Adulto , Idoso , Aminoácidos de Cadeia Ramificada/farmacologia , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Bebidas Energéticas , Humanos , Isoleucina/farmacologia , Leucina/farmacologia , Masculino , Pessoa de Meia-Idade
4.
Nutrients ; 11(10)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618863

RESUMO

This study determined the effects of increasing loads of whey protein on plasma amino acid (AA) concentrations, and their relationships with gastric emptying, blood glucose- and appetite-regulatory hormones, blood glucose and energy intake. Eighteen healthy lean men participated in a double-blinded study, in which they consumed, on 3 separate occasions, in randomised order, 450-mL drinks containing either 30 g (L) or 70 g (H) of pure whey protein isolate, or control with 0 g of protein (C). Gastric emptying, serum concentrations of AAs, ghrelin, cholecystokinin (CCK), glucagon-like-peptide 1 (GLP-1), insulin, glucagon and blood glucose were measured before and after the drinks over 180 min. Then energy intake was quantified. All AAs were increased, and 7/20 AAs were increased more by H than L. Incremental areas under the curve (iAUC0-180 min) for CCK, GLP-1, insulin and glucagon were correlated positively with iAUCs of 19/20 AAs (p < 0.05). The strongest correlations were with the branched-chain AAs as well as lysine, tyrosine, methionine, tryptophan, and aspartic acid (all R2 > 0.52, p < 0.05). Blood glucose did not correlate with any AA (all p > 0.05). Ghrelin and energy intake correlated inversely, but only weakly, with 15/20 AAs (all R2 < 0.34, p < 0.05). There is a strong relationship between gluco-regulatory hormones with a number of (predominantly essential) AAs. However, the factors mediating the effects of protein on blood glucose and energy intake are likely to be multifactorial.


Assuntos
Aminoácidos/sangue , Regulação do Apetite , Glicemia/metabolismo , Ingestão de Energia , Esvaziamento Gástrico , Hormônios Peptídicos/sangue , Proteínas do Soro do Leite/administração & dosagem , Adolescente , Adulto , Biomarcadores/sangue , Estudos Cross-Over , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Masculino , Austrália do Sul , Fatores de Tempo , Proteínas do Soro do Leite/metabolismo , Adulto Jovem
5.
Nutrients ; 11(1)2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30621276

RESUMO

Whey protein is rich in the branched-chain amino acids, L-leucine, L-isoleucine and L-valine. Thus, branched-chain amino acids may, at least in part, mediate the effects of whey to reduce energy intake and/or blood glucose. Notably, 10 g of either L-leucine or L-isoleucine, administered intragastrically before a mixed-nutrient drink, lowered postprandial blood glucose, and intraduodenal infusion of L-leucine (at a rate of 0.45 kcal/min, total: 9.9 g) lowered fasting blood glucose and reduced energy intake from a subsequent meal. Whether L-valine affects energy intake, and the gastrointestinal functions involved in the regulation of energy intake, as well as blood glucose, in humans, is currently unknown. We investigated the effects of intraduodenally administered L-valine on antropyloroduodenal pressures, plasma cholecystokinin, blood glucose and energy intake. Twelve healthy lean men (age: 29 ± 2 years, BMI: 22.5 ± 0.7 kg/m²) were studied on 3 separate occasions in randomised, double-blind order. Antropyloroduodenal pressures, plasma cholecystokinin, blood glucose, appetite perceptions and gastrointestinal symptoms were measured during 90-min intraduodenal infusions of L-valine at 0.15 kcal/min (total: 3.3 g) or 0.45 kcal/min (total: 9.9 g), or 0.9% saline (control). Energy intake from a buffet-meal immediately after the infusions was quantified. L-valine did not affect antral, pyloric (mean number; control: 14 ± 5; L-Val-0.15: 21 ± 9; L-Val-0.45: 11 ± 4), or duodenal pressures, plasma cholecystokinin (mean concentration, pmol/L; control: 3.1 ± 0.3; L-Val-0.15: 3.2 ± 0.3; L-Val-0.45: 3.0 ± 0.3), blood glucose, appetite perceptions, symptoms or energy intake (kcal; control: 1040 ± 73; L-Val-0.15: 1040 ± 81; L-Val-0.45: 1056 ± 100), at either load (p > 0.05 for all). In conclusion, intraduodenal infusion of L-valine, at loads that are moderately (3.3 g) or substantially (9.9 g) above World Health Organization valine requirement recommendations, does not appear to have energy intake- or blood glucose-lowering effects.


Assuntos
Colecistocinina/sangue , Duodeno/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Trato Gastrointestinal/fisiologia , Antro Pilórico/efeitos dos fármacos , Valina/administração & dosagem , Adulto , Apetite/efeitos dos fármacos , Austrália , Glicemia/análise , Índice de Massa Corporal , Dieta , Método Duplo-Cego , Duodeno/fisiologia , Jejum , Esvaziamento Gástrico/efeitos dos fármacos , Esvaziamento Gástrico/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Pressão , Antro Pilórico/fisiologia , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...