Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(16): 3947-3958, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38586917

RESUMO

Colorectal cancer (CRC) occurs in the colorectum and ranks second in the global incidence of all cancers, accounting for one of the highest mortalities. Although the combination chemotherapy regimen of 5-fluorouracil (5-FU) and platinum(IV) oxaliplatin prodrug (OxPt) is an effective strategy for CRC treatment in clinical practice, chemotherapy resistance caused by tumor-resided Fusobacterium nucleatum (Fn) could result in treatment failure. To enhance the efficacy and improve the biocompatibility of combination chemotherapy, we developed an antibacterial-based nanodrug delivery system for Fn-associated CRC treatment. A tumor microenvironment-activated nanomedicine 5-FU-LA@PPL was constructed by the self-assembly of chemotherapeutic drug derivatives 5-FU-LA and polymeric drug carrier PPL. PPL is prepared by conjugating lauric acid (LA) and OxPt to hyperbranched polyglycidyl ether. In principle, LA is used to selectively combat Fn, inhibit autophagy in CRC cells, restore chemosensitivity of 5-FU as well as OxPt, and consequently enhance the combination chemotherapy effects for Fn-associated drug-resistant colorectal tumor. Both in vitro and in vivo studies exhibited that the tailored nanomedicine possessed efficient antibacterial and anti-tumor activities with improved biocompatibility and reduced non-specific toxicity. Hence, this novel anti-tumor strategy has great potential in the combination chemotherapy of CRC, which suggests a clinically relevant valuable option for bacteria-associated drug-resistant cancers.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Fluoruracila , Ácidos Láuricos , Fluoruracila/farmacologia , Fluoruracila/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Humanos , Ácidos Láuricos/química , Ácidos Láuricos/farmacologia , Animais , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Fusobacterium nucleatum/efeitos dos fármacos , Oxaliplatina/farmacologia , Oxaliplatina/química , Sistemas de Liberação de Medicamentos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Portadores de Fármacos/química
2.
Clin Med Insights Oncol ; 18: 11795549241227415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322669

RESUMO

Background: Breast cancer (BC) patients have a higher chance of survival if it is diagnosed at an early stage, which is essential for efficient treatment of the condition. The results of an elevated risk of cancer, including BC, previously associated with the ins/del polymorphism rs145204276 in the promoter region of growth arrest-specific 5 (GAS5) are still up for debate. Thus, this study aimed to appraise the frequency of the GAS5 rs145204276 variant with BC risk and demonstrate the potential impact of the sirtuin 1 (SIRT-1), transforming growth factor-beta (TGF-ß), and microRNA-182 (miR-182) expression and their diagnostic value in BC. Methods: Blood samples of 155 patients with BC and fibroadenoma and 80 healthy controls were analyzed for GAS5 rs145204276 single nucleotide polymorphism (SNP), SIRT-1, TGF-ß, and miRNA-182 expression levels. Results: Ins/ins genotype and ins allele frequencies for GAS5 rs145204276 were considerably higher in BC patients compared with controls. Patients with BC had significantly greater serum levels of TGF-ß, miR-182, and SIRT-1 expression. Conclusions: The SIRT-1, TGF-ß, and miR-182 genes provide novel, noninvasive diagnostic biomarkers for BC.

3.
RSC Adv ; 14(1): 101-117, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173621

RESUMO

This work aims to develop plant extract-loaded electrospun nanofiber as an effective wound dressing scaffolds for topical wound healing. Electrospun nanofibers were fabricated from Syzygium cumini leaf extract (SCLE), poly(lactic-co-glycolic acid) (PLGA), poly(methyl methacrylate) (PMMA), collagen and glycine. Electrospinning conditions were optimized to allow the formation of nanosized and uniform fibers that display smooth surface. Morphology and swelling behavior of the formed nanofibers were studied. In addition, the antibacterial activity of the nanofibers against multidrug-resistant and human pathogens was assessed by agar-well diffusion. Results showed that nanofibers containing Syzygium cumini extract at concentrations of 0.5 and 1% w/v exhibited greater antibacterial activity against the tested Gram-positive (i.e., Staphylococcus aureus, Candida albicans, Candida glabrata and Bacillus cereus) and Gram-negative (i.e., Salmonella paratyphi and Escherichia coli) pathogens compared to the same concentrations of the plain extract. Furthermore, in vivo wound healing was evaluated in Wistar rats over a period of 14 days. In vivo results demonstrated that nanofiber mats containing SCLE and collagen significantly improved wound healing within two weeks, compared to the control untreated group. These findings highlight the potential of fabricated nanofibers in accelerating wound healing and management of topical acute wounds.

4.
Small Methods ; 8(3): e2301309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38018349

RESUMO

Fusobacterium nucleatum (Fn) existing in the community of colorectal cancer (CRC) promotes CRC progression and causes chemotherapy resistance. Despite great efforts that have been made to overcome Fn-induced chemotherapy resistance by co-delivering antibacterial agents and chemotherapeutic drugs, increasing the drug-loading capacity and enabling controlled release of drugs remain challenging. In this study, a novel supramolecular upconversion nanoparticle (SUNP) is constructed by incorporating a positively charged polymer (PAMAM-LA-CD) with Fn inhibition capacity, a negatively charged platinum (IV) oxaliplatin prodrug (OXA-COOH), upconversion nanoparticle (UCNPs) and polyethylene glycol-azobenzene (PEG-Azo) to enhance drug-loading and enable on-demand drug release for drug-resistant CRC treatment. SUNPs exhibit high drug-loading capacity (30.8%) and good structural stability under normal physiological conditions, while disassembled upon exogenous NIR excitation and endogenous azo reductase in the CRC microenvironment to trigger drug release. In vitro and in vivo studies demonstrate that SUNPs presented good biocompatibility and robust performance to overcome chemoresistance, thereby significantly inhibiting Fn-infected cancer cell proliferation. This study leverages multiple dynamic chemical designs to integrate both advantages of drug loading and release in a single system, which provides a promising candidate for precision therapy of bacterial-related drug-resistant cancers.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Humanos , Fusobacterium nucleatum/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Nanomedicina , Microambiente Tumoral
5.
Int J Biol Macromol ; 258(Pt 1): 128793, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134993

RESUMO

In this work, Tamarindus indica (T. indica)-loaded crosslinked poly(methyl methacrylate) (PMMA)/cellulose acetate (CA)/poly(ethylene oxide) (PEO) electrospun nanofibers were designed and fabricated for wound healing applications. T. indica is a plant extract that possesses antidiabetic, antimicrobial, antioxidant, antimalarial and wound healing properties. T. indica leaves extract of different concentrations were blended with a tuned composition of a matrix comprised of PMMA (10 %), CA (2 %) and PEO (1.5 %), and were electrospun to form smooth, dense and continuous nanofibers as illustrated by SEM investigation. In vitro evaluation of T. indica-loaded nanofibers on normal human skin fibroblasts (HBF4) revealed a high compatibility and low cytotoxicity. T. indica-loaded nanofibers significantly increased the healing activity of scratched HBF4 cells, as compared to the free plant extract, and the healing activity was significantly enhanced upon increasing the plant extract concentration. Moreover, T. indica-loaded nanofibers demonstrated significant antimicrobial activity in vitro against the tested microbes. In vivo, nanofibers resulted in a superior wound healing efficiency compared to the control untreated animals. Hence, engineered nanofibers loaded with potent phytochemicals could be exploited as an effective biocompatible and eco-friendly antimicrobial biomaterials and wound healing composites.


Assuntos
Anti-Infecciosos , Celulose/análogos & derivados , Nanofibras , Tamarindus , Animais , Humanos , Polimetil Metacrilato/farmacologia , Nanofibras/química , Cicatrização , Anti-Infecciosos/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia
6.
Nanomedicine (Lond) ; 18(22): 1553-1566, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37933674

RESUMO

Aim: We hypothesized that simultaneous administration of two antibiotics loaded into a nanopolymer matrix would augment their synergistic bactericidal interaction. Methods: Nanoplatforms of chitosan/Pluronic® loaded with ciprofloxacin/meropenem (CS/Plu-Cip/Mer) were prepared by the ionic gelation method, using Plu at concentrations in the range 0.5-4% w/v. CS/Plu-Cip/Mer was evaluated for antibacterial synergistic activity in vitro and in vivo. Results: CS/Plu-Cip and CS/Plu-Mer with Plu concentrations of 3% w/v and 2% w/v, respectively, exhibited ∼80% encapsulation efficiency. The MICs of pathogens were fourfold to 16-fold lower for CS/Plu-Cip/Mer than for Cip/Mer. Synergy was evidenced for CS/Plu-Cip/Mer with a bactericidal effect (at 1× MIC and sub-MICs), and it significantly decreased bacterial load and rescued infected rats. Conclusion: This study illustrates the ability of CS/Plu nanopolymer to intensify synergy between antibiotics, thereby providing a promising potential to rejuvenate antibiotics considered ineffective against resistant pathogens.


Antibiotics are used to treat bacterial infections. However, the more they are used, the less effective they become, because bacteria develop resistance to them. One strategy to overcome this is to treat bacterial infection with a combination of antibiotics that work well together. The antibiotics ciprofloxacin and meropenem are often given together to treat Pseudomonas aeruginosa, a bacterium which can cause sepsis, a type of blood poisoning. Another strategy to overcome antibiotic resistance is to load them into nanocarriers, which can change their properties. Nanocarrier-loaded antibiotics can reduce toxicity and increase effectiveness. This study investigated whether the effectiveness of this pair could be improved by loading them into nanoparticles. When these nanoparticles were given to rats with sepsis, they were significantly more effective than unloaded ciprofloxacin and meropenem combinations. These nanoparticles were also able to directly kill bacteria, rather than just prevent bacterial reproduction, as with the unloaded combination. This study demonstrates that nanocarrier loading can intensify the enhanced benefit of combined antibiotic treatments. This is a promising strategy to reuse antibiotics that have become ineffective at treating bacteria which have developed resistance.


Assuntos
Ciprofloxacina , Sepse , Ratos , Animais , Meropeném/farmacologia , Ciprofloxacina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas , Sepse/tratamento farmacológico , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
7.
Int J Pharm ; 647: 123549, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37890645

RESUMO

Exploitation of nanocarriers provides a compartment for enclosing drugs to protect them from degradation and potentiate their therapeutic efficiency. In the current study, amitriptyline- and liraglutide-loaded proniosomes were constructed for management of diabetic neuropathy, a serious complication associated with diabetes, that triggers spontaneous pain in patients and results in impaired quality of life. The developed therapeutic proniosomes were extensively characterized via dynamic light scattering, scanning electron microscopy, transmission electron microscopy, and Fourier transform-infrared spectroscopy. High entrapment efficiency could be attained for both drugs in the proniosomes, and the reconstituted amitriptyline- and liraglutide-loaded niosomes possessed spherical morphology and particle sizes of 585.3 nm and 864.4 nm, respectively. In a diabetic neuropathy rat model, oral administration of the developed amitriptyline- and liraglutide-loaded proniosomes significantly controlled blood glucose levels, reduced neuropathic pain, oxidative stress and inflammatory markers, and improved histological structure of the sciatic nerve as compared to the oral and subcutaneous administration of amitriptyline and liraglutide, respectively. Loading of the tricyclic antidepressant amitriptyline and the antidiabetic peptide liraglutide into proniosomes resulted in exceptional control over hyperglycemia and neuropathic pain, and thus could provide an auspicious delivery system for management of neuropathic pain and control of blood glucose levels.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Hiperglicemia , Neuralgia , Humanos , Ratos , Animais , Amitriptilina , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/complicações , Liraglutida/uso terapêutico , Glicemia , Qualidade de Vida , Neuralgia/tratamento farmacológico , Neuralgia/complicações , Lipossomos/química , Hiperglicemia/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico
8.
Methods ; 218: 133-140, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595853

RESUMO

Exploitation of machine learning in predicting performance of nanomaterials is a rapidly growing dynamic area of research. For instance, incorporation of therapeutic cargoes into nanovesicles (i.e., entrapment efficiency) is one of the critical parameters that ensures proper entrapment of drugs in the developed nanosystems. Several factors affect the entrapment efficiency of drugs and thus multiple assessments are required to ensure drug retention, and to reduce cost and time. Supervised machine learning can allow for the construction of algorithms that can mine data available from earlier studies to predict performance of specific types of nanoparticles. Comparative studies that utilize multiple regression algorithms to predict entrapment efficiency in nanomaterials are scarce. Herein, we report on a detailed methodology for prediction of entrapment efficiency in nanomaterials (e.g., niosomes) using different regression algorithms (i.e., CatBoost, linear regression, support vector regression and artificial neural network) to select the model that demonstrates the best performance for estimation of entrapment efficiency. The study concluded that CatBoost algorithm demonstrated the best performance with maximum R2 score (0.98) and mean square error (< 10-4). Among the various parameters that possess a role in entrapment efficiency of drugs into niosomes, the results obtained from CatBoost model revealed that the drug:lipid ratio is the major contributing factor affecting entrapment efficiency, followed by the lipid:surfactant molar ratio. Hence, supervised machine learning may be applied for future selection of the components of niosomes that achieve high entrapment efficiency of drugs while minimizing experimental procedures and cost.


Assuntos
Lipossomos , Nanoestruturas , Aprendizado de Máquina , Algoritmos , Lipídeos
9.
Int J Pharm ; 644: 123332, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37625602

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease associated with progressive articular damage, functional loss and comorbidity. Conventional RA therapy requires frequent dosing and prolonged use, and usually results in poor efficacy and severe toxicity. In the current study, for the first time, we describe a combination strategy using phytosomes co-loaded with curcumin (CUR) and leflunomide (LEF) to improve the clinical outcomes of RA therapy. Exploiting 23 factorial design, various compositions of CUR and LEF co-loaded phytosomes (CUR/LEF-phytosomes) were successfully prepared and were extensively characterized (e.g., particle size, zeta potential, drugs encapsulation efficiency, morphology, DSC, FTIR and release kinetics). The optimal CUR/LEF-loaded phytosomes (F2) demonstrated high stability and spherical morphology with a particle size of ca. 760 nm and negative zeta potential value of - 55.7, high entrapment for both drugs, and sustained release profile of the entrapped medications. In vivo, oral administration of the CUR/LEF-phytosomes (F2) in arthritic rats resulted in significant reduction of paw swelling and inflammatory markers, compared to the free drugs and their physical mixture. Histopathological examination revealed significant improvement in phytosomes-treated animal group with no signs of arthritis. CUR/LEF-loaded phytosomes provide an auspicious strategy for alleviation of RA.


Assuntos
Artrite Reumatoide , Curcumina , Animais , Ratos , Fitossomas , Artrite Reumatoide/tratamento farmacológico , Leflunomida , Administração Oral
10.
Int J Pharm ; 642: 123161, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37379891

RESUMO

Morphologic design of nanomaterials for a diversity of biomedical applications is of increasing interest. The aim of the current study is to construct therapeutic gold nanoparticles of different morphologies and investigate their effect on ocular retention and intraocular pressure in a glaucoma rabbit model. Poly(lactic-co-glycolic acid) (PLGA)-coated nanorods and nanospheres have been synthesized and loaded with carbonic anhydrase inhibitor (CAI), and characterized in vitro for their size, zeta potential and encapsulation efficiency. Nanosized PLGA-coated gold nanoparticles of both morphologies demonstrated high entrapment efficiency (˃ 98%) for the synthesized CAI and the encapsulation of the drug into the developed nanoparticles was confirmed via Fourier transform-infrared spectroscopy. In vivo studies revealed a significant reduction in intraocular pressure upon instillation of drug-loaded nanogold formulations compared to the marketed eye drops. Spherical nanogolds exhibited a superior efficacy compared to the rod-shaped counterparts, probably due to the enhanced ocular retention of spherical nanogolds within collagen fibers of the stroma, as illustrated by transmission electron microscopy imaging. Normal histological appearance was observed for the cornea and retina of the eyes treated with spherical drug-loaded nanogolds. Hence, incorporation of a molecularly-designed CAI into nanogold of tailored morphology may provide a promising strategy for management of glaucoma.


Assuntos
Glaucoma , Nanopartículas Metálicas , Nanopartículas , Animais , Coelhos , Pressão Intraocular , Inibidores da Anidrase Carbônica/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ouro/uso terapêutico , Glaucoma/tratamento farmacológico , Nanopartículas/química , Córnea , Portadores de Fármacos/química , Tamanho da Partícula
11.
J Control Release ; 359: 69-84, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245723

RESUMO

The naturally evolved and intestinal pathogenic Fusobacterium nucleatum (Fn)-induced drug resistance profoundly impaired the efficacy of chemotherapy against colorectal cancer (CRC). Alternative treatment modalities against Fn-associated CRC are desperately needed. Herein, we engineer an in situ-activated anti-tumor and antibacterial nanoplatform (Cu2O/BNN6@MSN-Dex) to allow photoacoustic (PA) imaging-guided photothermal and NO gas combinatorial therapy for enhanced Fn-associated CRC treatment. The nanoplatform is constructed by loading cuprous oxide (Cu2O) and nitric oxide (NO) donor (BNN6) into dextran-decorated mesoporous silica nanoparticles (MSN), which is finally surface-functionalized with dextran via dynamic boronate linkage. Cu2O can be sulfuretted in situ by endogenous hydrogen sulfide overexpressed in CRC to produce copper sulfide with remarkable PA and photothermal properties, enabling the generation of NO from BNN6 under 808 nm laser irradiation, which is eventually triggered to release by multiple biological cues in the tumor microenvironment. Cu2O/BNN6@MSN-Dex exhibits superior biocompatibility, as well as H2S-triggered near-infrared-controlled antibacterial and anti-tumor performance in vitro and in vivo via photothermal and NO gas combination therapy. Furthermore, Cu2O/BNN6@MSN-Dex provokes systemic immune responses, thereby promoting anti-tumor efficacy. This study provides a conbinational strategy to effectively inhibit tumors and intratumor pathogens for enhanced CRC treatment.


Assuntos
Neoplasias Colorretais , Nanopartículas , Humanos , Óxido Nítrico , Cobre , Dextranos , Fototerapia , Dióxido de Silício , Doadores de Óxido Nítrico , Antibacterianos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Nanopartículas/uso terapêutico , Microambiente Tumoral
12.
Int J Pharm ; 636: 122852, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934884

RESUMO

The current study aims to assess the use of nanocarriers to limit drug incompatibilities in clinical settings, and thus eliminating serious clinical consequences (e.g., catheter obstruction and embolism), and enhancing in vivo bioavailability and efficacy. As a proof-of-concept, the impact of loading well-documented physically incompatible drugs (i.e., furosemide and midazolam) into nanosized vesicles on in vitro stability and in vivo bioavailability of the two drugs was investigated. Furosemide and midazolam were loaded into nanosized spherical vesicles at high entrapment efficiency (ca. 62-69%). The drug-loaded vesicles demonstrated a sustained drug release patterns, high physical stability and negligible hemolytic activity. Physical incompatibility was assessed by exploiting microscopic technique coupled with image processing and analysis, dynamic light scattering and laser Doppler anemometry. Incorporation of drugs separately inside the nanosized vesicles dramatically decreased size and number of the precipitated particles. In vivo, the niosomal drug mixture demonstrated a significant improvement in pharmacokinetic profiles of furosemide and midazolam compared to the mixed free drug solutions, as evidenced by their longer circulation half-lives and higher area under the plasma-concentration time curves of both drugs. Nanocarriers could provide an auspicious strategy for circumventing drug incompatibilities, thus reducing adverse reactions, hospitalization period and improving therapeutic outcomes.


Assuntos
Furosemida , Midazolam , Lipossomos , Portadores de Fármacos , Disponibilidade Biológica
13.
Int J Pharm ; 631: 122537, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36572260

RESUMO

Overexpression of two carbonic anhydrase (CA) isoforms, CA IX and XII, in several hypoxic solid tumors provides an extracellular hypoxic microenvironment, interferes with extra- and intracellular pH regulation, thus favoring hypoxic tumor cell survival, proliferation and metastasis. In the current study, a selective inhibitor for human CA isoforms IX and XII (isatin-bearing sulfonamide, WEG-104), was incorporated into nanosized spherical niosomes at high encapsulation efficiency to allow for an enhanced and sustained antitumor activity. In vivo, administration of WEG-104 that is either free (10 mg/kg) or loaded into niosomes (5 mg/kg) into a mice model of Ehrlich ascites solid tumor resulted in comparable efficacy in terms of reduction of tumor weight and volume. Administration of WEG-104-loaded niosomes (10 mg/kg) exhibited superior antitumor activity compared to the free drug, evidenced by reduced tumor weight and volume, marked reduction in the activity of CA IX and XII, and suppression of HIF-1α and MMP-2. Moreover, prominent increase of caspase 3 and pronounced decrease in VEGF immune expression were observed in the treated animals. Hence, loading of molecularly designed compounds that targets CAs in hypoxic solid tumors into nanosized delivery systems provided an auspicious strategy for limiting solid tumor progression and malignancy.


Assuntos
Anidrases Carbônicas , Neoplasias , Camundongos , Animais , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Lipossomos/uso terapêutico , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/uso terapêutico , Hipóxia/tratamento farmacológico , Microambiente Tumoral
14.
J Nanobiotechnology ; 20(1): 536, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539809

RESUMO

Despite significant progress in synthetic polymer chemistry and in control over tuning the structures and morphologies of nanoparticles, studies on morphologic design of nanomaterials for the purpose of optimizing antimicrobial activity have yielded mixed results. When designing antimicrobial materials, it is important to consider two distinctly different modes and mechanisms of activity-those that involve direct interactions with bacterial cells, and those that promote the entry of nanomaterials into infected host cells to gain access to intracellular pathogens. Antibacterial activity of nanoparticles may involve direct interactions with organisms and/or release of antibacterial cargo, and these activities depend on attractive interactions and contact areas between particles and bacterial or host cell surfaces, local curvature and dynamics of the particles, all of which are functions of nanoparticle shape. Bacteria may exist as spheres, rods, helices, or even in uncommon shapes (e.g., box- and star-shaped) and, furthermore, may transform into other morphologies along their lifespan. For bacteria that invade host cells, multivalent interactions are involved and are dependent upon bacterial size and shape. Therefore, mimicking bacterial shapes has been hypothesized to impact intracellular delivery of antimicrobial nanostructures. Indeed, designing complementarities between the shapes of microorganisms with nanoparticle platforms that are designed for antimicrobial delivery offers interesting new perspectives toward future nanomedicines. Some studies have reported improved antimicrobial activities with spherical shapes compared to non-spherical constructs, whereas other studies have reported higher activity for non-spherical structures (e.g., rod, discoid, cylinder, etc.). The shapes of nano- and microparticles have also been shown to impact their rates and extents of uptake by mammalian cells (macrophages, epithelial cells, and others). However, in most of these studies, nanoparticle morphology was not intentionally designed to mimic specific bacterial shape. Herein, the morphologic designs of nanoparticles that possess antimicrobial activities per se and those designed to deliver antimicrobial agent cargoes are reviewed. Furthermore, hypotheses beyond shape dependence and additional factors that help to explain apparent discrepancies among studies are highlighted.


Assuntos
Anti-Infecciosos , Nanopartículas , Nanoestruturas , Animais , Nanopartículas/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros , Transporte Biológico , Mamíferos
15.
Pharm Biol ; 60(1): 2134-2144, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36305518

RESUMO

CONTEXT: Chitosan is a biocompatible polysaccharide that has been widely exploited in biomedical and drug delivery applications. OBJECTIVE: This study explores the renoprotective effect of chitosan nanoparticles in vivo in rats. MATERIALS AND METHODS: Chitosan nanoparticles were prepared via ionotropic gelation method, and several in vitro characterizations were performed, including measurements of particle size, zeta potential, polydispersity index, Fourier transform-infrared spectroscopy, differential scanning calorimetry, and transmission electron microscopy (TEM) imaging. Wistar rats were divided randomly into four groups; negative control, CCl4-induced nephrotoxicity (untreated), and two groups receiving CCl4 + chitosan NPs (10 and 20 mg/kg) orally for 2 weeks. The renoprotective effect was assessed by measuring oxidative, apoptotic, and inflammatory biomarkers, and via histopathological and immunohistochemical examinations for the visualization of NF-κB and COX-2 in renal tissues. RESULTS: Monodisperse spherical nanosized (56 nm) particles were successfully prepared as evidenced by dynamic light scattering and TEM. Oral administration of chitosan nanoparticles (10 and 20 mg/kg) concurrently with CCl4 for 2 weeks resulted in 13.6% and 21.5% reduction in serum creatinine and increase in the level of depleted reduced glutathione (23.1% and 31.8%), respectively, when compared with the positive control group. Chitosan nanoparticles (20 mg/kg) revealed a significant (p ˂ 0.05) decrease in malondialdehyde levels (30.6%), tumour necrosis factor-α (33.6%), interleukin-1ß (31.1%), and caspase-3 (36.6%). CONCLUSIONS: Chitosan nanoparticles afforded significant protection and amelioration against CCl4-induced nephrotoxicity. Thus, chitosan nanoparticles could afford a potential nanotherapeutic system for the management of nephrotoxicity which allows for broadening their role in biomedical delivery applications.


Assuntos
Quitosana , Nanopartículas , Animais , Ratos , Quitosana/química , Ratos Wistar , Tetracloreto de Carbono/toxicidade , Tamanho da Partícula
16.
Microb Drug Resist ; 28(10): 972-979, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36108336

RESUMO

Antibiotic combinations remain the frontline therapy for severe infections to reduce mortality. However, conventional antibiotic combinations have some limitations such as the low bioavailability and the rise of resistant strains. Nanoparticles are increasingly used as antibiotic delivery systems to promote bioavailability and hence improve efficacy of antibiotics. In this work, we hypothesize that the simultaneous delivery of two antibiotic-loaded nanoparticles will improve the intracellular bioavailability and thus inhibit emergence of resistance. Accordingly, Chitosan-pluronic nanoparticles were used to construct nanosized ciprofloxacin and meropenem and the antibacterial activity of nanosized combined antibiotics were compared versus unloaded single, unloaded combined, and nanosized single antibiotics. Thirty-six stepwise mutants were selected by exposing two E. coli strains to increasing concentrations of free-unloaded and nanosized antibiotics, and mutants were tested for antimicrobial susceptibilities using broth microdilution and disc diffusion methods. The change in expression levels of acrB efflux pump and porins (ompC and ompF) was assessed by real-time reverse transcription-PCR. The in vitro evaluation of combined ciprofloxacin and meropenem-loaded nanoparticles demonstrated that this nanosystem exhibited enhanced antibacterial effect. Step mutants selected with nanosized combined antibiotics showed higher sensitivity to both drugs, exhibited lower mutation frequencies, and less cross-resistance to other antimicrobial classes. Moreover, for all steps of selection, nanosized combined antibiotic mutants expressed significantly lower levels of acrB as well as higher levels of ompC and ompF (p-value <0.01). In view of these results, the use of nanosized combined antibiotics may be considered among the new promising strategies to combat infections through their potential efficacy in reducing microorganisms' ability to form resistant mutants.


Assuntos
Anti-Infecciosos , Quitosana , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Meropeném/farmacologia , Quitosana/farmacologia , Poloxâmero/metabolismo , Poloxâmero/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Porinas/metabolismo , Ciprofloxacina/farmacologia , Anti-Infecciosos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
17.
Nanoscale ; 14(30): 10738-10749, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35866631

RESUMO

Hemorrhage is a prime cause of death in civilian and military traumatic injuries, whereby a significant proportion of death and complications occur prior to paramedic arrival and hospital resuscitation. Hence, it is crucial to develop hemostatic materials that are able to be applied by simple processes and allow control over bleeding by inducing rapid hemostasis, non-invasively, until subjects receive necessary medical care. This tutorial review discusses recent advances in synthesis and fabrication of degradable hemostatic nanomaterials and nanocomposites. Control of assembly and fine-tuning of composition of absorbable (i.e., degradable) hemostatic supramolecular structures and nanoconstructs have afforded the development of smart devices and scaffolds capable of efficiently controlling bleeding while degrading over time, thereby reducing surgical operation times and hospitalization duration. The nanoconstructs that are highlighted have demonstrated hemostatic efficiency pre-clinically in animal models, while also sharing characteristics of degradability, bioabsorbability and presence of nano-assemblies within their compositions.


Assuntos
Hemostáticos , Animais , Hemorragia/terapia , Hemostasia , Técnicas Hemostáticas/efeitos adversos , Hemostáticos/farmacologia , Humanos
18.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745652

RESUMO

The current study evaluated the ability of sesamol-loaded albumin nanoparticles to impart protection against oxidative stress induced by anthracyclines in comparison to the free drug. Albumin nanoparticles were prepared via the desolvation technique and then freeze-dried with the cryoprotectant, trehalose. Albumin concentration, pH, and type of desolvating agent were assessed as determining factors for successful albumin nanoparticle fabrication. The optimal nanoparticles were spherical in shape, and they had an average particle diameter of 127.24 ± 2.12 nm with a sesamol payload of 96.89 ± 2.4 µg/mg. The drug cellular protection was tested on rat hepatocytes pretreated with 1 µM doxorubicin, which showed a 1.2-fold higher protective activity than the free sesamol. In a pharmacokinetic study, the loading of a drug onto nanoparticles resulted in a longer half-life and mean residence time, as compared to the free drug. Furthermore, in vivo efficacy and biochemical assessment of lipid peroxidation, cardiac biomarkers, and liver enzymes were significantly ameliorated after administration of the sesamol-loaded albumin nanoparticles. The biochemical assessments were also corroborated with the histopathological examination data. Sesamol-loaded albumin nanoparticles, prepared under controlled conditions, may provide an enhanced protective effect against off-target doxorubicin toxicity.

19.
Pharmaceutics ; 14(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35213953

RESUMO

Intravenous dexmedetomidine (DEX) is currently approved by the FDA for the sedation of intubated patients in intensive care units to reduce anxiety and to augment postoperative analgesia. Bradycardia and hypotension are limitations associated with the intravenous administration of DEX. In this study, DEX sublingual in situ gels were developed and assessed for their pH, gelling capacity, viscosity, mucoadhesion and in vitro drug release. The optimized gelling system demonstrated enhanced mucoadhesion, superior gelling capacity, reasonable pH and optimal rheological profile. In vivo, compared to the oral solution, the optimal sublingual gel resulted in a significant higher rate and extent of bioavailability. Although the in situ gel had comparable plasma levels to those observed following intravenous administration, significant amelioration of the systemic adverse reactions were attained. As demonstrated by the hot plate method, a sustained duration of analgesia in rats was observed after sublingual administration of DEX gel compared to the intravenously administered DEX solution. Furthermore, no changes in systolic blood pressure and heart rate were recorded in rats and rabbits, respectively, after sublingual administration of DEX. Sublingual administration of DEX in situ gel provides a promising approach for analgesia and sedation, while circumventing the reported adverse reactions associated with intravenous administration of DEX.

20.
Methods ; 199: 9-15, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34000392

RESUMO

Development of nanocarriers has opened new avenues for the delivery of therapeutics of various pharmacological activities with improved targeting properties and reduced side effects. Niosomes, non-ionic-based vesicles, have drawn much interest in various biomedical applications, owing to their unique characteristics and their ability to encapsulate both hydrophilic and lipophilic cargoes. Niosomes share structural similarity with liposomes while overcoming limitations associated with stability, sterilization, and large-scale production of liposomes. Different methods for preparation of niosomes have been described in the literature, each having its own merits and a great impact on the sizes and characteristics of the formed niosomes. In this article, procedures involved in the thin-film hydration method, a commonly used method for the preparation of niosomes, are described in detail, while highlighting precautions that should be considered for consistent and reproducible construction of niosomes.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Tamanho da Partícula , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...