Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38647175

RESUMO

Efficient separation of Kr from Kr/Xe mixtures is pivotal in nuclear waste management and dark matter research. Thus far, scientists have encountered a formidable challenge: the absence of a material with the ability to selectively adsorb Kr over Xe at room temperature. This study presents a groundbreaking transformation of the renowned metal-organic framework (MOF) CuBTC, previously acknowledged for its Xe adsorption affinity, into an unparalleled Kr-selective adsorbent. This achievement stems from an innovative densification approach involving systematic compression of the MOF, where the crystal size, interparticle interaction, defects, and evacuation conditions are synergistically modulated. The resultant densified CuBTC phase exhibits exceptional mechanical resilience, radiation tolerance, and notably an unprecedented selectivity for Kr over Xe at room temperature. Simulation and experimental kinetic diffusion studies confirm reduced gas diffusion in the densified MOF, attributed to its small pore window and minimal interparticle voids. The lighter Kr element demonstrates facile surface passage and higher diffusivity within the material, while the heavier Xe encounters increased difficulty entering the material and lower diffusivity. This Kr-selective MOF not only represents a significant breakthrough in Kr separation but also demonstrates remarkable processability and scalability to kilogram levels. The findings presented herein underscore the transformative potential of engineered MOFs in addressing complex challenges, heralding a new era of Kr separation technologies.

2.
RSC Adv ; 11(41): 25658-25663, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35478905

RESUMO

MOF-based mixed-matrix membranes (MMMs) have attracted considerable attention due to their tremendous separation performance and facile processability. In large-scale applications such as CO2 separation from flue gas, it is necessary to have high gas permeance, which can be achieved using thin membranes. However, there are only a handful of MOF MMMs that are fabricated in the form of thin-film composite (TFC) membranes. We propose herein the fabrication of robust thin-film composite mixed-matrix membranes (TFC MMMs) using a three dimensional (3D) printing technique with a thickness of 2-3 µm. We systematically studied the effect of casting concentration and number of electrospray cycles on membrane thickness and CO2 separation performance. Using a low concentration of polymer of intrinsic microporosity (PIM-1) or PIM-1/HKUST-1 solution (0.1 wt%) leads to TFC membranes with a thickness of less than 500 nm, but the fabricated membranes showed poor CO2/N2 selectivity, which could be attributed to microscopic defects. To avoid these microscale defects, we increased the concentration of the casting solution to 0.5 wt% resulting in TFC MMMs with a thickness of 2-3 µm which showed three times higher CO2 permeance than the neat PIM-1 membrane. These membranes represent the first examples of 3D printed TFC MMMs using the electrospray printing technique.

3.
Nat Commun ; 11(1): 3103, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555193

RESUMO

Capture and storage of volatile radionuclides that result from processing of used nuclear fuel is a major challenge. Solid adsorbents, in particular ultra-microporous metal-organic frameworks, could be effective in capturing these volatile radionuclides, including 85Kr. However, metal-organic frameworks are found to have higher affinity for xenon than for krypton, and have comparable affinity for Kr and N2. Also, the adsorbent needs to have high radiation stability. To address these challenges, here we evaluate a series of ultra-microporous metal-organic frameworks, SIFSIX-3-M (M = Zn, Cu, Ni, Co, or Fe) for their capability in 85Kr separation and storage using a two-bed breakthrough method. These materials were found to have higher Kr/N2 selectivity than current benchmark materials, which leads to a notable decrease in the nuclear waste volume. The materials were systematically studied for gamma and beta irradiation stability, and SIFSIX-3-Cu is found to be the most radiation resistant.

4.
Nano Lett ; 17(11): 6968-6973, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29048916

RESUMO

The magnetic susceptibility of synthesized magnetite (Fe3O4) microspheres was found to decline after the growth of a metal-organic framework (MOF) shell on the magnetite core. Detailed structural analysis of the core-shell particles using scanning electron microscopy, transmission electron microscopy, atom probe tomography, and57Fe-Mössbauer spectroscopy suggests that the distribution of MOF precursors inside the magnetic core resulted in the oxidation of the iron oxide core.

5.
Chemistry ; 23(45): 10758-10762, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28612499

RESUMO

Xenon is known to be a very efficient anesthetic gas, but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycling from anesthetic gas mixtures can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low-temperature distillation to recover Xe; this method is expensive to use in medical facilities. Herein, we propose a much simpler and more efficient system to recover and recycle Xe from exhaled anesthetic gas mixtures at room temperature using metal-organic frameworks (MOFs). Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity and Xe/O2 , Xe/N2 and Xe/CO2 selectivity at room temperature. The in situ synchrotron measurements suggest that Xe is occupies the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.

6.
Chem Sci ; 8(3): 2373-2380, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451342

RESUMO

Dynamic and flexible metal-organic frameworks (MOFs) that respond to external stimuli, such as stress, light, heat, and the presence of guest molecules, hold promise for applications in chemical sensing, drug delivery, gas separations, and catalysis. A greater understanding of the relationship between flexible constituents in MOFs and gas adsorption may enable the rational design of MOFs with dynamic moieties and stimuli-responsive behavior. Here, we detail the effect of subtle structural changes upon the gas sorption behavior of two "SIFSIX" pillared square grid frameworks, namely SIFSIX-3-M (M = Ni, Fe). We observe a pronounced inflection in the Xe adsorption isotherm in the Ni variant. With evidence from X-ray diffraction studies, density functional theory, and molecular simulations, we attribute the inflection to a disordered to ordered transition of the rotational configurations of the pyrazine rings induced by sorbate-sorbent interactions. We also address the effect of cage size, temperature, and sorbate on the guest-induced ring rotation and the adsorption isotherms. The absence of an inflection in the Xe adsorption isotherm in SIFSIX-3-Fe and in the Kr, N2, and CO2 adsorption isotherms in SIFSIX-3-Ni suggest that the inflection is highly sensitive to the match between the size of the cage and the guest molecule.

7.
ACS Appl Mater Interfaces ; 8(42): 28424-28427, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27736096

RESUMO

The synthetic approaches for fine-tuning the structural properties of coordination polymers or metal organic frameworks have exponentially grown during the past decade. This is due to the control over the properties of the resulting structures such as stability, pore size, pore chemistry and surface area for myriad possible applications. Herein, we present a new class of porous materials called Coordination Covalent Frameworks (CCFs) that were designed and effectively synthesized using a two-step reticular chemistry approach. During the first step, trigonal prismatic molecular building block was isolated using 4-aminobenazoic acid and Cr (III) salt, subsequently in the second step the polymerization of the isolated molecular building blocks (MBBs) takes place by the formation of strong covalent bonds where small organic molecules can connect the MBBs forming extended porous CCF materials. All the isolated CCFs were found to be permanently porous while the discrete MBB were nonporous. This approach would inevitably open a feasible path for the applications of reticular chemistry and the synthesis of novel porous materials with various topologies under ambient conditions using simple organic molecules and versatile MBBs with different functionalities that would not be possible using the traditional one-step approach.

8.
Chemistry ; 22(49): 17581-17584, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27685610

RESUMO

Efficient and cost-effective removal of radioactive pertechnetate anions from nuclear waste is a key challenge to mitigate long-term nuclear waste storage issues. Traditional materials such as resins and layered double hydroxides (LDHs) were evaluated for their pertechnetate or perrhenate (the non-radioactive surrogate) removal capacity, but there is room for improvement in terms of capacity, selectivity and kinetics. A series of functionalized hierarchical porous frameworks were evaluated for their perrhenate removal capacity in the presence of other competing anions.

9.
J Am Chem Soc ; 138(31): 9791-4, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27464226

RESUMO

Herein we demonstrate that chabazite zeolite SAPO-34 membranes effectively separated Kr/Xe gas mixtures at industrially relevant compositions. Control over membrane thickness and average crystal size led to industrial range permeances and high separation selectivities. Specifically, SAPO-34 membranes can separate Kr/Xe mixtures with Kr permeances as high as 1.2 × 10 (-7) mol/m(2) s Pa and separation selectivities of 35 for molar compositions close to typical concentrations of these two gases in air. In addition, SAPO-34 membranes separated Kr/Xe mixtures with Kr permeances as high as 1.2 × 10 (-7) mol/m(2) s Pa and separation selectivities up to 45 for molar compositions as might be encountered in nuclear reprocessing technologies. Molecular sieving and differences in diffusivities were identified as the dominant separation mechanisms.

10.
Angew Chem Int Ed Engl ; 55(29): 8285-9, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27238977

RESUMO

The demand for Xe/Kr separation continues to grow due to the industrial significance of high-purity Xe gas. Current separation processes rely on energy intensive cryogenic distillation. Therefore, less energy intensive alternatives, such as physisorptive separation, using porous materials, are required. Herein we show that an underexplored class of porous materials called hybrid ultra-microporous materials (HUMs) affords new benchmark selectivity for Xe separation from Xe/Kr mixtures. The isostructural materials, CROFOUR-1-Ni and CROFOUR-2-Ni, are coordination networks that have coordinatively saturated metal centers and two distinct types of micropores, one of which is lined by CrO4 (2-) (CROFOUR) anions and the other is decorated by the functionalized organic linker. These nets offer unprecedented selectivity towards Xe. Modelling indicates that the selectivity of these nets is tailored by synergy between the pore size and the strong electrostatics afforded by the CrO4 (2-) anions.

11.
Chem Commun (Camb) ; 51(94): 16872, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26530600

RESUMO

Correction for 'Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas' by Sameh K. Elsaidi et al., Chem. Commun., 2015, 51, 15530-15533.

12.
Chem Commun (Camb) ; 51(85): 15530-3, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26348358

RESUMO

Capture of CO2 from flue gas is considered to be a feasible approach to mitigate the effects of anthropogenic emission of CO2. Herein we report that an isostructural family of metal organic materials (MOMs) of general formula [M(linker)2(pillar)], linker = pyrazine, pillar = hexaflourosilicate and M = Zn, Cu, Ni and Co exhibits highly selective removal of CO2 from dry and wet simulated flue gas. Two members of the family, M = Ni and Co, SIFSIX-3-Ni and SIFSIX-3-Co, respectively, are reported for the first time and compared with the previously reported Zn and Cu analogs.

13.
Langmuir ; 30(22): 6454-62, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24835550

RESUMO

Grand canonical Monte Carlo (GCMC) simulations of CO2 and CH4 sorption and separation were performed in dia-7i-1-Co, a metal-organic material (MOM) consisting of a 7-fold interpenetrated net of Co(2+) ions coordinated to 4-(2-(4-pyridyl)ethenyl)benzoate linkers. This MOM shows high affinity toward CH4 at low loading due to the presence of narrow, close fitting, one-dimensional hydrophobic channels-this makes the MOM relevant for applications in low-pressure methane storage. The calculated CO2 and CH4 sorption isotherms and isosteric heat of adsorption, Qst, values in dia-7i-1-Co are in good agreement with the corresponding experimental results for all state points considered. The experimental initial Qst value for CH4 in dia-7i-1-Co is currently the highest of reported MOM materials, and this was further validated by the simulations performed herein. The simulations predict relatively constant Qst values for CO2 and CH4 sorption across all loadings in dia-7i-1-Co, consistent with the one type of binding site identified for the respective sorbate molecules in this MOM. Examination of the three-dimensional histogram showing the sites of CO2 and CH4 sorption in dia-7i-1-Co confirmed this finding. Inspection of the modeled structure revealed that the sorbate molecules form a strong interaction with the organic linkers within the constricted hydrophobic channels. Ideal adsorbed solution theory (IAST) calculations and GCMC binary mixture simulations predict that the selectivity of CO2 over CH4 in dia-7i-1-Co is quite low, which is a direct consequence of the MOM's high affinity toward both CO2 and CH4 as well as the nonspecific mechanism shown here. This study provides theoretical insights into the effects of pore size on CO2 and CH4 sorption in porous MOMs and its effect upon selectivity, including postulating design strategies to distinguish between sorbates of similar size and hydrophobicity.

14.
J Am Chem Soc ; 136(13): 5072-7, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24611507

RESUMO

We report the synthesis, structure, and sorption properties of a family of eight diamondoid (dia) metal-organic materials (MOMs) that are sustained by Co(II) or Zn(II) cations linked by one of three rigid ligands: 4-(2-(4-pyridyl)ethenyl)benzoate (1), 4-(pyridin-4-yl)benzoate (2), and 4-(pyridin-4-yl)acrylate (3). Pore size control in this family of dia nets was exerted by two approaches: changing the length of the linker ligand from 1 to 3, and using solvent as a template to control the level of interpenetration in nets based upon 1 and 3. The resulting MOMs, dia-8i-1, dia-5i-3, dia-7i-1-Zn, dia-7i-1-Co, dia-4i-3-a, dia-4i-3-b, dia-4i-2, and dia-4i-1, exhibit 1D channels with pore limiting diameters (PLDs) of 1.64, 2.90, 5.06, 5.28, 8.57, 8.83, 11.86, and 18.25 Å, respectively. We selected dia nets for this study for the following reasons: their 1D channels facilitate study of the impact of pore size on gas sorption parameters in situations where pore chemistry is similar (pyridyl benzoate-type linkers) or identical (in the case of polymorphs), and their saturated metal centers eliminate open metal sites from dominating sorbent-solvate interactions and possibly masking the effect of pore size. Our data reveal that smaller pore sizes offer stronger interactions, as determined by the isosteric heat of adsorption (Qst) and the steepness of the adsorption isotherm in the low-pressure region. The porous MOM with the smallest PLD suitable for physisorption, dia-7i-1-Co, was thereby found to exhibit the highest Qst values for CO2 and CH4. Indeed, dia-7i-1-Co exhibits a Qst for CH4 of 26.7 kJ/mol, which was validated through grand canonical Monte Carlo simulation studies of CH4 adsorption. This Qst value is considerably higher than those found in covalent organic frameworks and other MOMs with unsaturated metal centers. These results therefore further validate the critical role that PLD plays in gas adsorption by porous MOMs.

15.
Chem Commun (Camb) ; 49(84): 9809-11, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24029926

RESUMO

The use of WO4(2-) instead of CrO4(2-) or MoO4(2-) as an angular pillar in topology nets has afforded two isostructural porous nets of formula [M(bpe)2WO4] (M = Co or Ni, bpe = 1,2-(4-pyridyl)ethene). The Ni variant, WOFOUR-1-Ni, is highly selective towards CO2 thanks to its exceptionally high isosteric heat of adsorption (Qst) of -65.5 kJ mol(-1) at zero loading.

16.
Chem Commun (Camb) ; 49(74): 8154-6, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23925067

RESUMO

Two porous nets have been prepared via a 2-step crystal engineering approach that links decorated trigonal prismatic [Cr3(µ3-O)(CO2)6] and [Cu3(µ3-Cl)(RNH2)6Cl6] molecular building blocks, MBBs. tp-PMBB-5-acs-1 is a rare example of a rigid acs underlying net whereas tp-PMBB-6-stp-1, an stp underlying net, exhibits free NH2 groups in its channels and a relatively high isosteric heat of adsorption for CO2.


Assuntos
Dióxido de Carbono/química , Cloretos/química , Metais Pesados/química , Ligação de Hidrogênio , Modelos Moleculares , Tamanho da Partícula , Porosidade , Propriedades de Superfície
17.
J Am Chem Soc ; 134(48): 19556-9, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23170983

RESUMO

A novel 4(8).6(7) topology metal-organic material (MOM) platform of formula [M(bpe)(2)(M'O(4))] (M = Co or Ni; bpe = 1,2-bis(4-pyridyl)ethene; M' = Mo or Cr) has been synthesized and evaluated in the context of gas sorption. These MOMs have been assigned RCSR code mmo and are uninodal 6-connected nets. [Ni(bpe)(2)(MoO(4))], MOOFOUR-1-Ni, and its chromate analogue, CROFOUR-1-Ni, exhibit high CO(2) affinity and selectivity, especially at low loading. This behavior can be attributed to exceptionally high isosteric heats of adsorption (Q(st)) of CO(2) in MOOFOUR-1-Ni and CROFOUR-1-Ni of ∼56 and ∼50 kJ/mol, respectively, at zero loading. These results were validated by molecular simulations which indicate that the electrostatics of these inorganic anions affords attractions toward CO(2) that are comparable to those of unsaturated metal centers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...