Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Front Cell Neurosci ; 18: 1336145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699177

RESUMO

The orexins, also referred to as hypocretins, are neuropeptides that originate from the lateral hypothalamus (LH) region of the brain. They are composed of two small peptides, orexin-A, and orexin-B, which are broadly distributed throughout the central and peripheral nervous systems. Orexins are recognized to regulate diverse functions, involving energy homeostasis, the sleep-wake cycle, stress responses, and reward-seeking behaviors. Additionally, it is suggested that orexin-A deficiency is linked to sleepiness and narcolepsy. The orexins bind to their respective receptors, the orexin receptor type 1 (OX1R) and type 2 (OX2R), and activate different signaling pathways, which results in the mediation of various physiological functions. Orexin receptors are widely expressed in different parts of the body, including the skin, muscles, lungs, and bone marrow. The expression levels of orexins and their receptors play a crucial role in apoptosis, which makes them a potential target for clinical treatment of various disorders. This article delves into the significance of orexins and orexin receptors in the process of apoptosis, highlighting their expression levels and their potential contributions to different diseases. The article offers an overview of the existing understanding of the orexin/receptor system and how it influences the regulation of apoptosis.

2.
Eur J Pharm Sci ; 198: 106792, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714237

RESUMO

Non-alcoholic steatohepatitis (NASH) is characterized by liver inflammation, fat accumulation, and collagen deposition. Due to the limited availability of effective treatments, there is a pressing need to develop innovative strategies. Given the complex nature of the disease, employing combination approaches is essential. Hedgehog signaling has been recognized as potentially promoting NASH, and cholesterol can influence this signaling by modifying the conformation of PTCH1 and SMO activity. HSP90 plays a role in the stability of SMO and GLI proteins. We revealed significant positive correlations between Hedgehog signaling proteins (Shh, SMO, GLI1, and GLI2) and both cholesterol and HSP90 levels. Herein, we investigated the novel combination of the cholesterol-lowering agent lovastatin and the HSP90 inhibitor PU-H71 in vitro and in vivo. The combination demonstrated a synergy score of 15.09 and an MSA score of 22.85, as estimated by the ZIP synergy model based on growth inhibition rates in HepG2 cells. In a NASH rat model induced by thioacetamide and a high-fat diet, this combination therapy extended survival, improved liver function and histology, and enhanced antioxidant defense. Additionally, the combination exhibited anti-inflammatory and anti-fibrotic potential by influencing the levels of TNF-α, TGF-ß, TIMP-1, and PDGF-BB. This effect was evident in the suppression of the Col1a1 gene expression and the levels of hydroxyproline and α-SMA. These favorable outcomes may be attributed to the combination's potential to inhibit key Hedgehog signaling molecules. In conclusion, exploring the applicability of this combination contributes to a more comprehensive understanding and improved management of NASH and other fibrotic disorders.

3.
Bioresour Bioprocess ; 11(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38647852

RESUMO

Development of nano-enabled fertilizers from green waste is one of the effective options to enhance global agricultural productions and minimize environmental pollution. In this study, novel, eco-friendly and cost-effective nano- enabled fertilizers (NEF) were synthesized using the planetary ball milling procedure. The NEF (nDPF1and nDPF2) were prepared by impregnation of nanostructured date palm pits (nDPP) with (KH2PO4 + MgO) at 1:1 and 3:1 (w/w) ratios respectively. The nDPP, nDPF1 and nDPF2 were extensively characterized. The produced nano-fertilizers enhanced soil water retention capacity with nDPF2 being the most effective. The water retention capacity of nDPF2 treated soil was 5.6 times higher than that of soil treated with conventional fertilizers. In addition, the nDPF2 exhibited superior sustained lower release rates of P, K and Mg nutrients for longer release periods in comparison with the conventional fertilizers. For instance, P cumulative release percentages from conventional fertilizers, nDPF1 and nDPF2 in soil reached 22.41%, 10.82 and 8.9% respectively within 384 h. Findings from FTIR and XPS analyses suggested that hydrogen bonding and ligand exchange were the main interaction mechanisms of PO4-K-Mg ions with nDPP surface. The released kinetics data of the NEF revealed that power function was the best suitable model to describe the kinetics of P, K and Mg release data from NEF in water and soil. Pot study ascertained that the nano-enabled fertilizers (nDPF1 and nDPF2) significantly promoted biomass production and nutrient uptake of maize plants as compared to commercial fertilizer treated plants. The present work demonstrated the potential of NEF to increase nutrients uptake efficiency, mitigate moisture retention problem in arid soils and reduce nutrients loss through leaching and safeguard the environment.

5.
Plant Genome ; : e20444, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38476036

RESUMO

Unlike other growth stages of wheat, very few studies on drought tolerance have been done at the seedling stage, and this is due to the complexity and sensitivity of this stage to drought stress resulting from climate change. As a result, the drought tolerance of wheat seedlings is poorly understood and very few genes associated with drought tolerance at this stage were identified. To address this challenge, a set of 172 spring wheat genotypes representing 20 different countries was evaluated under drought stress at the seedling stage. Drought stress was applied on all tested genotypes by water withholding for 13 days. Two types of traits, namely morphological and physiological traits were scored on the leaves of all tested genotypes. Genome-wide association study (GWAS) is one of the effective genetic analysis methods that was used to identify target single nucleotide polymorphism (SNP) markers and candidate genes for later use in marker-assisted selection. The tested plant materials were genotyped using 25k Infinium iSelect array (25K) (herein after it will be identified as 25K) (for 172 genotypes) and genotyping-by-sequencing (GBS) (for 103 genotypes), respectively. The results of genotyping revealed 21,093 25K and 11,362 GBS-SNPs, which were used to perform GWAS analysis for all scored traits. The results of GWAS revealed that 131 and 55 significant SNPs were controlling morphological and physiological traits, respectively. Moreover, a total of eight and seven SNP markers were found to be associated with more than one morphological and physiological trait under drought stress, respectively. Remarkably, 10 significant SNPs found in this study were previously reported for their association with drought tolerance in wheat. Out of the 10 validated SNP markers, four SNPs were associated with drought at the seedling stage, while the remaining six SNPs were associated with drought stress at the reproductive stage. Moreover, the results of gene enrichment revealed 18 and six pathways as highly significant biological and molecular pathways, respectively. The selection based on drought-tolerant alleles revealed 15 genotypes with the highest number of different drought-tolerant alleles. These genotypes can be used as candidate parents in future breeding programs to produce highly drought-tolerant genotypes with high genetic diversity. Our findings in this study provide novel markers and useful information on the genetic basis of drought tolerance at early growth stages.

6.
Tissue Cell ; 88: 102360, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38489913

RESUMO

PURPOSE: Intermittent fasting (IF) has been shown to induce a well-organized adaptive defense against stress inside the cells, which increases the production of anti-oxidant defenses, repair of DNA, biogenesis of mitochondria, and genes that combat inflammation. So, the goal of the current investigation was to identify the effects of IF on rats with adriamycin (ADR)-induced nephropathy and any potential underlying mechanisms. METHODS: Four groups of 40 mature Sprague-Dawley male rats were allocated as follow; control, fasting, ADR, and ADR plus fasting. After 8 weeks of ADR administration urine, blood samples and kidneys were taken for assessment of serum creatinine (Cr), BUN, urinary proteins, indicators of oxidative damage (malondialdehyde (MDA), reduced glutathione (GSH) and Catalase (CAT) levels), histopathological examinations, immunohistochemical examinations for caspase-3, Sirt1, aquaporin2 (AQP2) and real time PCR for antioxidant genes; Nrf2, HO-1 in kidney tissues. RESULTS: IF significantly improved serum creatinine, BUN and urinary protein excretion, oxidative stress (low MDA with high CAT and GSH), in addition to morphological damage to the renal tubules and glomeruli as well as caspase-3 production during apoptosis. Moreover, IF stimulates significantly the expression of Sirt1 and Nrf2/HO-1 and AQP2. CONCLUSION: AQP2, Sirt1, Nrf2/HO-1 signaling may be upregulated and activated by IF, which alleviates ADR nephropathy. Enhancing endogenous antioxidants, reducing apoptosis and tubulointerstitial damage, and maintaining the glomerular membrane's integrity are other goals.

7.
Heliyon ; 10(6): e27694, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509956

RESUMO

Background: Bronchial asthma is a persistent inflammatory respiratory condition that restricts the passage of air and causes hyperresponsiveness. Chronic asthma can be classified into three categories: mild, moderate, and severe. Remodeling took place as the extracellular matrix accumulated in the walls of the airways. Inflammation occurs as a result of the damage caused by matrix metalloproteinase-2 (MMP-2) to basement membrane type IV collagen. The severity of asthma may be associated with miR-196a2. The objective of our study was to investigate the underlying mechanisms and clinical relevance of miR-196a2 and MMP-2 serum levels in relation to the severity of asthma. Methods: This study recruited 85 controls and 95 asthmatics classified as mild, moderate, or severe. Expression of miR-196a2 was measured by quantitative reverse transcriptase PCR. Using the enzyme-linked immunosorbent assay (ELISA), MMP-2, IL-6, and total immunoglobulin E (IgE) levels in the serum of asthmatics of various grades were compared to a control group. MMP-2's diagnostic and prognostic potential was determined using ROC curve analysis. This study also measured blood Eosinophils and PFTs. We examined MMP-2's connections with IgE, blood Eosinophils, and PFTs. Results: The current investigation found that miR-196a2 expression was significantly higher in the control group than in asthmatic patients as a whole. The study found that severe asthmatics had higher MMP-2, IL-6, and IgE serum levels than healthy controls. We identified the MMP-2 serum concentration cutoff with great sensitivity and specificity. Significant relationships between MMP-2 serum level and miR-196a2 expression in the patient group with severe asthmatics were found. The MMP-2, IL-6, and IgE serum levels were considerably higher in mild, moderate, and severe asthmatics than controls. The miR-196a2 expression and MMP-2 serum concentration correlated positively with IgE and blood eosinophils % and negatively with all lung function tests in the asthmatic patient group.Conclusion: the study revealed that the elevated miR-196a2 expression and serum concentration of MMP-2, IL-6, and IgE associated with elevated blood eosinophils % is associated with pathophysiology and degree of asthma severity. The miR-196a2 expression and MMP-2 serum concentration have a promising diagnostic and prognostic ability in bronchial asthma.

8.
Sci Rep ; 14(1): 5691, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454001

RESUMO

Nanotechnology has emerged as a promising approach for the controlled release of nutrients, particularly phosphorus and potassium. These essential plant nutrients are often applied in excess, leading to environmental pollution and loss of efficiency in crop production. Innovative economic and highly efficient fertilizers are urgently needed to achieve the targeted crop production worldwide in the presence of limited land and water resources. Therefore, in this study, novel, eco-friendly, cost-effective and enhanced efficiency nano-enabled fertilizers, NEF (nWTF1and nWTF2) were synthesized by impregnation of nanostructured water treatment residuals (nWTR) with (KH2PO4 + MgO) at 1:1 and 3:1 (w/w) ratios respectively using a planetary ball mill. The nWTR, nWTF1 and nWTF2 were extensively characterized. The water retention behavior and the sustained release of nutrients from the fabricated nano-enabled fertilizers (nWTF1 and nWTF2) in distilled water and sandy soil were investigated and monitored over time. The water retention capacity of the soil treated with nWTF2 after 26 days was 9.3 times higher than that of soil treated with conventional fertilizer. In addition, the nWTF2 exhibited lower release rates of P, K and Mg nutrients for longer release periods in comparison with the conventional fertilizers. This is a significant advantage over traditional fertilizers, which release nutrients quickly and can lead to leaching and nutrient loss. The main interaction mechanisms of PO4-K-Mg ions with nWTR surface were suggested. The results of the kinetics study revealed that power function was the best suitable model to describe the kinetics of P, K and Mg release data from NEF in water and soil. The produced NEF were applied to Zea maize plants and compared to commercial chemical fertilizer control plants. The obtained results revealed that the nano-enabled fertilizers (nWTF1 and nWTF2) significantly promoted growth, and P content compared with the commercial chemical fertilizer treated plants. The present work demonstrated the power of nano enabled fertilizers as efficient and sustained release nano-fertilizers for sustainable agriculture and pollution free environment.


Assuntos
Água Potável , Fertilizantes , Fertilizantes/análise , Resíduos Industriais , Preparações de Ação Retardada , Agricultura/métodos , Solo/química , Nutrientes , Nitrogênio
9.
Heliyon ; 10(5): e26077, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434411

RESUMO

Water deficit is a critical obstacle that devastatingly impacts rice production, particularly in arid regions under current climatic fluctuations. Accordingly, it is decisive to reinforce the drought tolerance of rice by employing sustainable approaches to enhance global food security. The present study aimed at exploring the effect of exogenous application using different biostimulants on physiological, morphological, and yield attributes of diverse rice genotypes under water deficit and well-watered conditions in 2-year field trial. Three diverse rice genotypes (IRAT-112, Giza-178, and IR-64) were evaluated under well-watered (14400 m3/ha in total for the entire season) and water deficit (9170 m3/ha) conditions and were exogenously sprayed by nano-silicon, potassium sulfate, or proline. The results showed that drought stress substantially decreased all studied photosynthetic pigments, growth traits, and yield attributes compared to well-watered conditions. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased compared with those under well-watered conditions. However, the foliar application of nano-silicon, potassium sulfate, and proline substantially mitigated the deleterious effects of drought stress and markedly enhanced photosynthetic pigments, antioxidant enzyme activities, growth parameters, and yield contributing traits compared to untreated stressed control. Among the assessed treatments, foliar spray with nano-silicon or proline was more effective in promoting drought tolerance. The exogenous application of proline improved chlorophyll a, chlorophyll b, and carotenoids by 21.4, 19.6 and 21.0% followed by nano-silicon treatment, which enhanced chlorophyll a, chlorophyll b, and carotenoids by 21.1, 17.6 and 9.5% compared to untreated control. Besides, the application of proline demonstrated a superior improvement in the content of proline by 52.5% compared with the untreated control. Moreover, nano-silicon exhibited the maximum enhancement of catalase and peroxidase activity compared to the other treatments. The positive impacts of applied exogenously nano-silicon or proline significantly increased panicle length, number of panicles/plant, number of grains/panicle, fertility percentage, 1000-grain weight, panicle weight, and grain yield, compared to untreated plants under water deficit conditions. In addition, the physiological and agronomic performance of evaluated rice genotypes significantly contrasted under drought conditions. The genotype Giza-178 displayed the best performance under water deficit conditions compared with the other genotypes. Consequently, the integration of applied exogenously nano-silicon or proline with tolerant rice genotype as Giza-178 is an efficient approach to ameliorating drought tolerance and achieving agricultural sustainability under water-scarce conditions in arid environments.

10.
FASEB J ; 38(4): e23480, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38354025

RESUMO

Accumulating evidence suggests that dysregulation of FOXO3a plays a significant role in the progression of various malignancies, including hepatocellular carcinoma (HCC). FOXO3a inactivation, driven by oncogenic stimuli, can lead to abnormal cell growth, suppression of apoptosis, and resistance to anticancer drugs. Therefore, FOXO3a emerges as a potential molecular target for the development of innovative treatments in the era of oncology. Linagliptin (LNGTN), a DPP-4 inhibitor known for its safe profile, has exhibited noteworthy anti-inflammatory and anti-oxidative properties in previous in vivo studies. Several potential molecular mechanisms have been proposed to explain these effects. However, the capacity of LNGTN to activate FOXO3a through AMPK activation has not been investigated. In our investigation, we examined the potential repurposing of LNGTN as a hepatoprotective agent against diethylnitrosamine (DENA) intoxication. Additionally, we assessed LNGTN's impact on apoptosis and autophagy. Following a 10-week administration of DENA, the liver underwent damage marked by inflammation and early neoplastic alterations. Our study presents the first experimental evidence demonstrating that LNGTN can reinstate the aberrantly regulated FOXO3a activity by elevating the nuclear fraction of FOXO3a in comparison to the cytosolic fraction, subsequent to AMPK activation. Moreover, noteworthy inactivation of NFκB induced by LNGTN was observed. These effects culminated in the initiation of apoptosis, the activation of autophagy, and the manifestation of anti-inflammatory, antiproliferative, and antiangiogenic outcomes. These effects were concomitant with improved liver function and microstructure. In conclusion, our findings open new avenues for the development of novel therapeutic strategies targeting the AMPK/FOXO3a signaling pathway in the management of chronic liver damage.


Assuntos
Carcinoma Hepatocelular , Inibidores da Dipeptidil Peptidase IV , Neoplasias Hepáticas , Animais , Ratos , Linagliptina/farmacologia , Proteínas Quinases Ativadas por AMP , Dietilnitrosamina/toxicidade , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Hipoglicemiantes , Inibidores de Proteases , Antivirais , Anti-Inflamatórios
11.
Artigo em Inglês | MEDLINE | ID: mdl-38308745

RESUMO

PURPOSE OF REVIEW: Cervical spine pain with or without radicular symptoms is a common condition leading to high utilization of the healthcare system with over 10 million medical visits per year. Many patients undergo surgical interventions and unfortunately are still left with neck and upper extremity pain, sometimes referred to as "Failed Neck Surgery Syndrome." When these options fail, cervical spinal cord stimulation can be a useful tool to decrease pain and suffering as well as reduce prescription medication use. RECENT FINDINGS: Spinal cord stimulation is a well-established therapy for chronic back and leg pain and is becoming more popular for neck and upper extremity pain. Recent studies have explored cervical spinal cord stimulation with successful outcomes regarding improved pain scores, functional outcomes, and reduction of prescription medication use. Continued research into cervical spinal cord stimulation is essential for maximizing its therapeutic potential for patients with chronic neck and upper extremity pain. This review highlights the importance of cervical spinal cord stimulation as an option for patients with failed neck surgery syndrome.

12.
Chem Biodivers ; 21(3): e202301617, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38193652

RESUMO

In the current study, the actinomycetes associated with the red sea-derived soft coral Sarcophyton glaucum were investigated in terms of biological and chemical diversity. Four different media, M1, ISP2, Marine Agar (MA), and Actinomycete isolation agar (AIA) were used for the isolation of three strains of actinomycetes that were identified as Streptomyces sp. UR 25, Micromonospora sp. UR32 and Saccharomonospora sp. UR 19. LC-HRMS analysis was used to investigate the chemical diversity of the isolated actinobacteria. The LC-HRMS data were statistically processed using MetaboAnalyst 5.0 viz to differentiate the extract groups and determine the optimal growth culturing conditions. Multivariate data statistical analysis revealed that the Micromonospora sp. extract cultured on (MA) medium is the most distinctive extract in terms of chemical composition. While, the Streptomyces sp. UR 25 extracts are differ significantly from Micromonospora sp. UR32 and Saccharomonospora sp. UR 19. Biological investigation using in vitro cytotoxic assay for actinobacteria extracts revealed the prominent potentiality of the Streptomyces sp. UR 25 cultured on oligotrophic medium against human hepatoma (HepG2), human breast adenocarcinoma (MCF-7) and human colon adenocarcinoma (CACO2) cell lines (IC50 =3.3, 4.2 and 6.8 µg/mL, respectively). SwissTarget Prediction speculated that among the identified compounds, 16-deethyl, indanomycin (8) could have reasonable affinity on HDM2 active site. In this respect, molecular docking study was performed for compound (8) to reveal a substantial affinity on HDM2 active site. In addition, molecular dynamics simulations were carried out at 200 ns for the most active compound (8) compared to the co-crystallized inhibitor DIZ giving deeper information regarding their thermodynamic and dynamic properties as well.


Assuntos
Actinobacteria , Adenocarcinoma , Antozoários , Antineoplásicos , Neoplasias do Colo , Streptomyces , Animais , Humanos , Actinobacteria/química , Oceano Índico , Actinomyces , Ágar/metabolismo , Células CACO-2 , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo
13.
Pathol Res Pract ; 253: 155086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176308

RESUMO

Liver cancer stands as the fourth leading global cause of death, and its prognosis remains grim due to the limited effectiveness of current medical interventions. Among the various pathways implicated in the development of hepatocellular carcinoma (HCC), the hedgehog signaling pathway has emerged as a crucial player. Itraconazole, a relatively safe and cost-effective antifungal medication, has gained attention for its potential as an anticancer agent. Its primary mode of action involves inhibiting the hedgehog pathway, yet its impact on HCC has not been elucidated. The main objective of this study was to investigate the effect of itraconazole on diethylnitrosamine-induced early-stage HCC in rats. Our findings revealed that itraconazole exhibited a multifaceted arsenal against HCC by downregulating the expression of key components of the hedgehog pathway, shh, smoothened (SMO), and GLI family zinc finger 1 (GLI1), and GLI2. Additionally, itraconazole extended survival and improved liver tissue structure, attributed mainly to its inhibitory effects on hedgehog signaling. Besides, itraconazole demonstrated a regulatory effect on Notch1, and Wnt/ß-catenin signaling molecules. Consequently, itraconazole displayed diverse anticancer properties, including anti-inflammatory, antiangiogenic, antiproliferative, and apoptotic effects, as well as the potential to induce autophagy. Moreover, itraconazole exhibited a promise to impede the transformation of epithelial cells into a more mesenchymal-like phenotype. Overall, this study emphasizes the significance of targeting the hedgehog pathway with itraconazole as a promising avenue for further exploration in clinical studies related to HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Proteínas Hedgehog/genética , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Via de Sinalização Wnt
14.
Plant Foods Hum Nutr ; 79(1): 90-97, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38060143

RESUMO

Global population growth poses a threat to sustainable development. Meanwhile, the use of plant proteins as healthy and sustainable alternatives to animal proteins needs further research. Therefore, this investigation was designed to study the nutritive, structural, and thermal properties of isolated protein fractions from different legumes, i.e., faba bean (FPI), soybean (SPI), and lupine (LPI). As a prospective plant-based protein powder, an equal mixture (MPI) of the three prior legume samples was formulated to study its properties compared to each sole sample. The alkaline extraction and isoelectric precipitation (AE-IP) technique was used for protein isolation. Results showed that all protein isolates had reasonable levels of protein with maximum protein content in SPI (96.15%). The MPI sample, however, came out on top in terms of amino acid profile followed by FBI. Compared to SPI and LPI, it had the highest isoleucine content and higher methionine, valine, leucine, phenylalanine, and lysine. Moreover, MPI showed a median particle charge (-37.1 mV) compared to FPI, SPI, and LPI samples. MPI sample peak showed resistance to heat denaturation at a temperature greater than 200 °C when the DSC test was conducted. With respect to its rheological characteristics, it outperformed the other three protein isolates and exhibited the highest values of storage modulus G' and loss modulus G". Consequently, our study suggests that pulse-derived protein isolate mixture can be used as a unique type of nutritious dietary protein supplement. It could be a good nutritional alternative to proteins derived from animals.


Assuntos
Lupinus , Vicia faba , Animais , Humanos , Veganos , Glycine max , Dieta Vegana , Verduras , Proteínas de Plantas
15.
Molecules ; 28(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067441

RESUMO

In recent years, cannabis has been proposed and promoted not only as a medicine for the treatment of a variety of illnesses, but also as an industrial crop for different purposes. Being an agricultural product, cannabis inflorescences may be contaminated by environmental pathogens at high concentrations, which might cause health problems if not controlled. Therefore, limits have to be placed on the levels of aerobic bacteria as well as yeast and mold. To ensure the safety of cannabis plant material and related products, a remediation process has to be put in place. Gamma irradiation is a sterilization process mainly used for pharmaceuticals, foods, cosmetics, agricultural, and herbal products including cannabis plant material. This study was designed to determine the effect of irradiation on the microbial count as well as on the chemical and physical profiles of the cannabis biomass, particularly cannabinoids, terpenes, and moisture content. The full cannabinoid profile was measured by GC/FID and HPLC analysis, while terpene profile and moisture content were determined using GC/MS and Loss on Drying (LoD) methods, respectively. Analyses were conducted on the samples before and after gamma irradiation. The results showed that the minimum and maximum doses were 15 and 20.8 KiloGray (KGY), respectively. Total Aerobic Microbial Count (TAMC) and Total Yeast and Mold Count (TYMC) were determined. The study showed that irradiation has no effect on the cannabinoids and little effect on terpenes and moisture content, but it did result in the virtual sterilization of the plant material, as evidenced by the low levels of bacterial and fungal colony-forming units (CFUs) < 10 after gamma irradiation.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Canabinoides/química , Cannabis/química , Terpenos/análise , Saccharomyces cerevisiae , Biomassa , Agonistas de Receptores de Canabinoides
16.
Artigo em Inglês | MEDLINE | ID: mdl-37797227

RESUMO

Background: Cannabis sativa is a psychoactive plant indigenous to Central and South Asia, traditionally used both for recreational and religious purposes, in addition to folk medicine. Cannabis is a rich source of natural compounds, the most important of which are commonly known as cannabinoids that cause a variety of effects through interaction with the endocannabinoid system. Materials and Methods: In this study, a high-performance liquid chromatography-ultraviolet/photodiode array (PDA) method was developed and validated for the analysis of 15 cannabinoids in cannabis plant materials and cannabis-based marketed products. These cannabinoids are cannabidivarinic acid, cannabidivarin, cannabidiolic acid, cannabigerolic acid, cannabigerol, cannabidiol, delta-9-tetrahydrocannabivarin, delta-9-tetrahydrocannabivarinic acid, cannabinol, delta-9-tetrahyrocannabinol, delta-8-tetrahyrocannabinol, cannabicyclol, cannabichromene, delta-9-tetrahyrocannabinolic acid A, and cannabichromenic acid. The separation was carried out using a reversed-phase Luna® C18(2) column and a mobile phase consisting of 75% acetonitrile and 0.1% formic acid in water. A PDA detector was used, and data were extracted at λ=220 nm. Principal component analysis of cannabis four varieties was performed. Results: The method was linear over the calibration range of 5-75 µg/mL with R2>0.999 for all cannabinoids. This method was sensitive and gave good baseline separation of all examined cannabinoids with limits of detection ranging between 0.2 and 1.6 µg/mL and limits of quantification ranging between 0.6 and 4.8 µg/mL. The average recoveries for all cannabinoids were between 81% and 104%. The measured repeatability and intermediate precisions (% relative standard deviation) in all varieties ranged from 0.35% to 9.84% and 1.11% to 5.26%, respectively. Conclusions: The proposed method is sensitive, selective, reproducible, and accurate. It can be applied for the simultaneous determination of these cannabinoids in the C. sativa biomass and cannabis-derived marketed products.

17.
F1000Res ; 12: 793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767022

RESUMO

Background: COVID-19 is a global pandemic that has affected millions of people all over the world since 2019. Infection with COVID-19 initiates a humoral immune response that produces antibodies against specific viral antigens, which in turn is supposed to provide immunity against reinfection for a period of time. The aim of this research was to study the kinetics of IgM and IgG antibodies against SARS-CoV-2. Methods: One hundred and seventeen post-COVID-19 participants were enrolled in the study.  Qualitative assessment of IgM and IgG antibodies over six months (three visits) post recovery was conducted. Results: The current study revealed a significant reduction in IgM and IgG titers between the first and second visits (p <0.001). After six months, the antibody titer had declined by 78.8% from the first visit for IgM and by 49.2% for IgG antibodies. Regarding younger age and male sex, statistically significant persistence of IgM antibodies was noticed at the six months follow up. Also, statistically significant persistent IgG immunity was found in male patients and diabetics by the end of the six months follow up. Conclusions: We observed a significant waning of IgM and IgG titers over a period of six months follow up.. The persistence of positive IgM and IgG antibodies by the end of six months was variable due to differences in age, gender and presence of diabetes mellitus.

18.
Acta Endocrinol (Buchar) ; 19(1): 87-98, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601709

RESUMO

Context: Graves' disease is the most prevalent cause of hyperthyroidism worldwide. Adiponectin, the most abundant adipokine, plays a significant role in a cluster of prevalent diseases connected to metabolic disorders. Objective: Although the association between adiponectin and Graves' disease has been studied, the existing data is inconsistent. Therefore, we conducted this systematic review and meta-analysis to evaluate the relationship between adiponectin levels and Graves' disease. Methods: We performed a systematic electronic search on PubMed, EMBASE, Scopus and Cochrane Library using predefined keywords. We used the NHLBI quality assessment tools to assess the included studies. Results: There were 11 studies involving 781 subjects included in our qualitative synthesis, while 6 studies were included in our quantitative synthesis. We observed significantly increased adiponectin levels in Graves' disease patients compared to controls (MD 2.983 [95% CI 0.138-5.828]) and hypothyroidism patients (MD 3.389 [95% CI 1.332-5.446]). Nevertheless, no significant MD was observed when comparing Graves' disease patients with and without Graves' ophthalmopathy (MD -27.124 [95% CI -88.893 - 34.645]). Conclusions: Adiponectin levels were significantly higher in patients with Graves' disease compared to controls and hypothyroidism patients. However, patients with and without Graves' ophthalmopathy did not present a significant mean difference in adiponectin levels.

19.
Molecules ; 28(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630414

RESUMO

High concentrations of graphene oxide (GO), a nanoparticle substance with rapid manufacturing development, have the ability to penetrate the soil surface down to the mineral-rich subsurface layers. The destiny and distribution of such an unusual sort of nanomaterial in the environment must therefore be fully understood. However, the way the chemistry of solutions impacts GO nanoparticle adsorption on clay minerals is still unclear. Here, the adsorption of GO on clay minerals (e.g., bentonite and kaolinite) was tested under various chemical conditions (e.g., GO concentration, soil pH, and cation valence). Non-linear Langmuir and Freundlich models have been applied to describe the adsorption isotherm by comparing the amount of adsorbed GO nanoparticle to the concentration at the equilibrium of the solution. Our results showed fondness for GO in bentonite and kaolinite under similar conditions, but the GO nanoparticle adsorption with bentonite was superior to kaolinite, mainly due to its higher surface area and surface charge. We also found that increasing the ionic strength and decreasing the pH increased the adsorption of GO nanoparticles to bentonite and kaolinite, mainly due to the interaction between these clay minerals and GO nanoparticles' surface oxygen functional groups. Experimental data fit well to the non-linear pseudo-second-order kinetic model of Freundlich. The model of the Freundlich isotherm was more fitting at a lower pH and higher ionic strength in the bentonite soil while the lowest R2 value of the Freundlich model was recorded at a higher pH and lower ionic strength in the kaolinite soil. These results improve our understanding of GO behavior in soils by revealing environmental factors influencing GO nanoparticle movement and transmission towards groundwater.

20.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631038

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an irreversible and life-threatening lung disease of unknown etiology presenting only a few treatment options. TGF-ß signaling orchestrates a cascade of events driving pulmonary fibrosis (PF). Notably, recent research has affirmed the augmentation of TGF-ß receptor (TßR) signaling via HSP90 activation. HSP90, a molecular chaperone, adeptly stabilizes and folds TßRs, thus intricately regulating TGF-ß1 signaling. Our investigation illuminated the impact of alvespimycin, an HSP90 inhibitor, on TGF-ß-mediated transcriptional responses by inducing destabilization of TßRs. This outcome stems from the explicit interaction of TßR subtypes I and II with HSP90, where they are clients of this cellular chaperone. It is worth noting that regulation of proteasome-dependent degradation of TßRs is a critical standpoint in the termination of TGF-ß signal transduction. Oleuropein, the principal bioactive compound found in Olea europaea, is acknowledged for its role as a proteasome activator. In this study, our aim was to explore the efficacy of a combined therapy involving oleuropein and alvespimycin for the treatment of PF. We employed a PF rat model that was induced by intratracheal bleomycin infusion. The application of this dual therapy yielded a noteworthy impediment to the undesired activation of TGF-ß/mothers against decapentaplegic homologs 2 and 3 (SMAD2/3) signaling. Consequently, this novel combination showcased improvements in both lung tissue structure and function while also effectively restraining key fibrosis markers such as PDGF-BB, TIMP-1, ACTA2, col1a1, and hydroxyproline. On a mechanistic level, our findings unveiled that the antifibrotic impact of this combination therapy likely stemmed from the enhanced degradation of both TßRI and TßRII. In conclusion, the utilization of proteasomal activators in conjunction with HSP90 inhibitors ushers in a promising frontier for the management of PF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...