Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 52(5): 1448-1462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413512

RESUMO

The number of people diagnosed with advanced stages of kidney disease have been rising every year. Early detection and constant monitoring are the only minimally invasive means to prevent severe kidney damage or kidney failure. We propose a cost-effective machine learning-based testing system that can facilitate inexpensive yet accurate kidney health checks. Our proposed framework, which was developed into an iPhone application, uses a camera-based bio-sensor and state-of-the-art classical machine learning and deep learning techniques for predicting the concentration of creatinine in the sample, based on colorimetric change in the test strip. The predicted creatinine concentration is then used to classify the severity of the kidney disease as healthy, intermediate, or critical. In this article, we focus on the effectiveness of machine learning models to translate the colorimetric reaction to kidney health prediction. In this setting, we thoroughly evaluated the effectiveness of our novel proposed models against state-of-the-art classical machine learning and deep learning approaches. Additionally, we executed a number of ablation studies to measure the performance of our model when trained using different meta-parameter choices. Our evaluation results indicate that our selective partitioned regression (SPR) model, using histogram of colors-based features and a histogram gradient boosted trees underlying estimator, exhibits much better overall prediction performance compared to state-of-the-art methods. Our initial study indicates that SPR can be an effective tool for detecting the severity of kidney disease using inexpensive lateral flow assay test strips and a smart phone-based application. Additional work is needed to verify the performance of the model in various settings.


Assuntos
Nefropatias , Rim , Humanos , Creatinina , Aprendizado de Máquina , Algoritmos , Nefropatias/diagnóstico
2.
JMIR Mhealth Uhealth ; 6(10): e11040, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327288

RESUMO

BACKGROUND: Wearable and connected health devices along with the recent advances in mobile and cloud computing provide a continuous, convenient-to-patient, and scalable way to collect personal health data remotely. The Wavelet Health platform and the Wavelet wristband have been developed to capture multiple physiological signals and to derive biometrics from these signals, including resting heart rate (HR), heart rate variability (HRV), and respiration rate (RR). OBJECTIVE: This study aimed to evaluate the accuracy of the biometric estimates and signal quality of the wristband. METHODS: Measurements collected from 35 subjects using the Wavelet wristband were compared with simultaneously recorded electrocardiogram and spirometry measurements. RESULTS: The HR, HRV SD of normal-to-normal intervals, HRV root mean square of successive differences, and RR estimates matched within 0.7 beats per minute (SD 0.9), 7 milliseconds (SD 10), 11 milliseconds (SD 12), and 1 breaths per minute (SD 1) mean absolute deviation of the reference measurements, respectively. The quality of the raw plethysmography signal collected by the wristband, as determined by the harmonic-to-noise ratio, was comparable with that obtained from measurements from a finger-clip plethysmography device. CONCLUSIONS: The accuracy of the biometric estimates and high signal quality indicate that the wristband photoplethysmography device is suitable for performing pulse wave analysis and measuring vital signs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...