Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Mater ; 31(35): e1900331, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31268196

RESUMO

Steam-cracker tar (SCT) is a by-product of ethylene production that is in massive quantities globally (>150 × 106 tons per year). With few useful applications, the production of unwanted SCT leads to the need for its costly disposal or burning at the boiler plant. The discovery of new uses for SCT would therefore bring both economic and environmental benefits, although, to date, efforts toward employing SCT in diverse applications have been limited, and progress is further hampered by a lack of understanding of the material itself. Although complex and highly heterogeneous in nature, the molecular composition of SCT has the potential to serve as a diverse and tunable feedstock for wide-ranging applications. Here, a simple solution-processing method for SCT that allows its conductivity and optical properties to be controlled over orders of magnitude is reported. Here, by way of example, the focus is on the production of transparent conductive thin films, which exhibit a wide range of transparencies (23-93%) and sheet resistances (2.5 Ω â–¡-1 to 1.2 kΩ â–¡-1 ) that are tuned by a combination of solution concentration and thermal annealing. As transparent Joule heaters, even without optimization, these SCT devices show competitive performance compared to established technologies such as those based on reduced graphene oxide, and surpass the temperature stability limit of other materials. Furthermore, it is demonstrated that laser annealing can be used to process the SCT films and directly pattern transparent heaters on an arbitrary substrate. These results highlight the potential of SCT as a feedstock material for electronic applications and suggest that broader classes of either naturally occurring carbon or produced carbonaceous by-products could prove useful in a range of applications.

2.
ACS Appl Mater Interfaces ; 8(32): 20802-13, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27458646

RESUMO

Efficient bifunctional catalysts for electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desirable due to their wide applications in fuel cells and rechargeable metal air batteries. However, the development of nonprecious metal catalysts with comparable activities to noble metals is still challenging. Here we report a one-step wet-chemical synthesis of Ni-/Mn-promoted mesoporous cobalt oxides through an inverse micelle process. Various characterization techniques including powder X-ray diffraction (PXRD), N2 sorption, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) confirm the successful incorporation of Ni and Mn leading to the formation of Co-Ni(Mn)-O solid solutions with retained mesoporosity. Among these catalysts, cobalt oxide with 5% Ni doping demonstrates promising activities for both ORR and OER, with an overpotential of 399 mV for ORR (at -3 mA/cm(2)) and 381 mV (at 10 mA/cm(2)) for OER. Furthermore, it shows better durability than precious metals featuring little activity decay throughout 24 h continuous operation. Analyses of cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), Raman, and O2-temperature-programmed desorption (O2-TPD) reveal that redox activity of Co(3+) to Co(4+) is crucial for OER performance, while the population of surface oxygen vacancies and surface area determine ORR activities. The comprehensive investigation of the intrinsic active sites for ORR and OER by correlating different physicochemical properties to the electrochemical activities is believed to provide important insight toward the rational design of high-performance electrocatalysts for ORR and OER reactions.

3.
Anal Chem ; 78(18): 6356-63, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16970309

RESUMO

A dual microelectrode electrochemical time-of-flight technique in which diffusion flux of Ag+, Cl-, or H+ ions electrochemically produced at a generator electrode is measured by recording potential-time transients with Ag, Ag/AgCl, or iridium oxide potentiometric microsensors, respectively, is developed. The generator and microsensor electrodes are typically spaced by 50-100 microm and are incorporated in the lithographically fabricated thin-layer-type devices. Under conditions of moderate rates of the ion electrogeneration, the potential-time (E-t) transients recorded with the three microsensors show excellent agreement with theory involving linear diffusion equations and the experimentally determined Nernstian slopes of the microsensors. However, when the generator current, or the initial concentration of the primary ion of interest is low, appreciable delays in the recorded E-t transients are observed due to the finite capacitance of the micropotentiometric sensors. The recorded delay in the E-t transients can be quantitatively accounted for by including the sensor capacitance (C) in the theoretical description of the transients. Direct comparison between the theoretical and the experimental E-t transients yields the sensor's capacitance. This capability of our new technique is unique in that it allows determination of the capacitance of a potentiometric sensor at open circuit. In the cases of silver electrodes, this method results in C = 31 +/- 2 microF/cm2, a value that is in agreement with those obtained by other methods. The results for silver chloride sensors yield a C in the range of 100-140 +/- 10 microF/cm2. The specific values depend on sensor preparation and the resulting roughness of the Ag/AgCl interface. Iridium oxide sensors show a capacitance that linearly depends on the thickness of the film. Specific capacitance of these microporous films was determined to be 59 +/- 6 F/cm3.


Assuntos
Potenciometria/métodos , Capacitância Elétrica , Eletroquímica , Microeletrodos , Potenciometria/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA