Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 29(6): 103293, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35592743

RESUMO

Application of bio-pesticides in agriculture has been developed as alternative agents to conventional pesticides due to residues accumulating which causing detrimental effects to human and environment. The aim of this investigation is to evaluate biosafety of a bio-insecticide Beauveria bassiana using two products in female rats by single oral dose through hepato- and renal toxicity, hematotoxicity and lipid profile. The two products from B. bassiana (AUMC 9896) were metabolic crude (MC), and wettable powder formulation (WP) of the local isolate. Results showed a significant increase in values of erythrocytes (RBCs), leucocytes (WBCs), platelet count (Plt) and the absolute differential WBC counts. Liver enzymes (AST, ALT, and ALP) and globulin (Glb) content were reduced in the exposed female rats with both types of B. bassiana in comparison to controls. While ratio of AST/ALT and A/G, total protein level (TP) and albumin (Alb) were raised in Beauveria bassiana -treated rats (Bb - treated rats). Urea and creatinine concentrations decreased or increased significantly in treated rats. Moreover, there was a decline in the serum of lipid profiles in WP - treated rats, but LDL levels increased in all treated animal. Additionally, no mortality or toxicity in all treated. All animals treated showed non-significant modifications in body weight gain and a slight change in relative liver weights when compared to controls. These results suggest that both treatments effect markedly on function and somatic index of the liver and slight effects on CBC and lipid profile aspects of treated female rats.

2.
Saudi J Biol Sci ; 29(2): 920-932, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35197760

RESUMO

Nemours effective management tactics were used to reduce world crop losses caused by plant-parasitic nematodes. Nowadays the metallic nanoparticles are easily developed with desired size and shape. Nanoparticles (NPs) technology becomes a recognized need for researchers. Ecofriendly and biosafe SiNPs are developed from microorganisms. Recently, silicon nanoparticles (SiNPs) have gained novel pesticide properties against numerous agricultural pests. This study assessed the biosynthesis of SiNPs from Fusarium oxysporum SM5. The obtained SiNPs were spherical with a size of 45 nm and a negative charge of -25.65. The nematocidal effect of SiNPs against egg hatching and second-stage juveniles (J2) of root-knot nematode (RKN) (Meloidogyne incognita) was evaluated on eggplant,Solanum melongena L. plants. In vitro, all tested SiNPs concentrations significantly (p ≤ 0.05) inhibited the percentage of egg hatching at a different time of exposure than control. Meanwhile, after 72 h, the percent mortality of J2 ranged from 87.00 % to 98.50 %, with SiNPs (100 and 200 ppm). The combination between SiNPs and the half-recommended doses (0.5 RD) of commercial nematicides namely,  fenamiphos (Femax 40 % EC)R, nemathorin (Fosthiazate 10 % WG) R, and fosthiazate (krenkel 75 % EC) R confirmed the increase of egg hatching inhibition and J2 mortality after exposure to SiNPs (100 ppm) mixed with 0.5 RD of synthetic nematicides. The findings suggest that the combination between SiNPs, and 0.5 RD of nematicides reduced nematode reproduction, gall formation, egg masses on roots and final population of J2 in the soil. Therefore, improving the plant growth parameters by reducing the M. incognita population.

3.
Nanomaterials (Basel) ; 10(3)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210153

RESUMO

In spite of great developments in the agricultural field and plant productivity in the last decades, the concern about the control of agricultural pests is still continuous. However, pest management is expected to have more effects from nanomaterials by providing innovative solutions. The current study confirms the biotransformation of copper nanoparticles (CuNPs) using a cell-free culture extract of metal copper-resistant bacteria Pseudomonas fluorescens MAL2, which was isolated from heavy metal-contaminated soils collected from Sharqia Governorate, Egypt. The local screened bacterial isolate, Pseudomonas fluorescens MAL2, is similar to Pseudomonas fluorescens DSM 12442T DSM. After optimization of growth conditions, F-Base medium was found to be the best medium and pH 7, temperature 35 °C, concentration of CuSO4·5H2O 300 ppm, 10 mL supernatant: 40 mL CuSO4·5H2O (300 ppm), and reaction time 90 min were recorded as the best growth conditions to the fabrication of CuNPs. The formed CuNPs were characterized using initially visual observation of the change in the color of the reaction mixture from blue color to the dark green as an indication of CuNPs biotransformation. Then, UV-Vis spectroscopy showed a maximum absorption at 610 nm under the optimum conditions performed. Transmission Electron Microscopy (TEM) revealed the formation of spherical aspect with size ranges from 10:70 nm; moreover, Energy Dispersive X-ray spectroscopy (EDX) indicated the presence of CuNPs and other elements. In addition, the presence of alcohols, phenols, alkenes, and amines is confirmed by Fourier-Transform Infrared spectroscopy (FTIR) spectroscopy analysis. Dynamic Light Scattering (DLS) supported that the Zeta-average size of nanoparticle was 48.07 with 0.227 PdI value. The Zeta potential showed -26.00mV with a single peak. The biosynthesized CuNPs (Bio CuNPs) showed toxicity against the stored grain pest (Tribolium castaneum), where LC50 value was 37 ppm after 5 days of treatment. However, the negligible effect was observed with chemical synthesis of CuNPs (Ch CuNPs) at the same concentration. The results suggest that Bio CuNPs could be used not only as a biocontrol agent, but also as an ecofriendly and inexpensive approach for controlling the stored grain pests.

4.
Open Biol ; 6(1): 150197, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26763344

RESUMO

The Notch pathway is an essential regulator of cell proliferation and differentiation during development. Its involvement in insect oogenesis has been examined in insect species with meroistic ovaries, and it is known to play a fundamental role in cell fate decisions and the induction of the mitosis-to-endocycle switch in follicular cells (FCs). This work reports the functions of the main components of the Notch pathway (Notch and its ligands Delta and Serrate) during oogenesis in Blattella germanica, a phylogenetically basal species with panoistic ovary. As is revealed by RNAi-based analyses, Notch and Delta were found to contribute towards maintaining the FCs in an immature, non-apoptotic state. This ancestral function of Notch appears in opposition to the induction of transition from mitosis to endocycle that Notch exerts in Drosophila melanogaster, a change in the Notch function that might be in agreement with the evolution of the insect ovary types. Notch was also shown to play an active role in inducing ovarian follicle elongation via the regulation of the cytoskeleton. In addition, Delta and Notch interactions were seen to determine the differentiation of the posterior population of FCs. Serrate levels were found to be Notch-dependent and are involved in the control of the FC programme, although they would appear to play no crucial role in panoistic ovary oogenesis.


Assuntos
Diferenciação Celular , Baratas/citologia , Baratas/metabolismo , Proteínas de Insetos/metabolismo , Folículo Ovariano/citologia , Transdução de Sinais , Animais , Apoptose , Proliferação de Células , Citoesqueleto/metabolismo , Feminino , Ligantes , Mitose , Interferência de RNA
5.
Biol Cell ; 107(8): 273-85, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25907767

RESUMO

BACKGROUND INFORMATION: Epidermal growth factor receptor (EGFR) signalling is crucial for the regulation of multiple developmental processes. Its function in relation to insect oogenesis has been thoroughly studied in the fly Drosophila melanogaster, which possesses ovaries of the highly modified meroistic type. Conversely, studies in other insect species with different ovary types are scarce. We have studied EGFR functions in the oogenesis of the cockroach Blattella germanica, a phylogenetically basal insect with panoistic ovaries. RESULTS: In this cockroach, depletion of EGFR expression aborts oocyte maturation and prevents oviposition, as affects the distribution of F-actins in the follicular cells of the basal ovarian follicle, which triggers premature apoptosis. In the younger ovarian follicles within the ovariole, depletion of EGFR expression reduces the number of follicular cells, possibly because the Hippo pathway is altered; moreover, the concomitant reduction of Notch expression results in the absence of stalk. Finally, depletion of EGFR determines an increase in the number of germinal cells. CONCLUSIONS: In the panoistic ovary of B. germanica, EGFR plays a role in the control of cell proliferation through interaction with Hippo and Notch pathways.


Assuntos
Blattellidae/metabolismo , Receptores ErbB/metabolismo , Proteínas de Insetos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Blattellidae/citologia , Blattellidae/enzimologia , Blattellidae/genética , Movimento Celular , Proliferação de Células , Receptores ErbB/genética , Feminino , Proteínas de Insetos/genética , Ovário/citologia , Ovário/enzimologia , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores Notch/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA