Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 25(21): 5267-5281, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27641156

RESUMO

Several reviews in the past decade have heralded the benefits of embracing high-throughput sequencing technologies to inform conservation policy and the management of threatened species, but few have offered practical advice on how to expedite the transition from conservation genetics to conservation genomics. Here, we argue that an effective and efficient way to navigate this transition is to capitalize on emerging synergies between conservation genetics and primary industry (e.g., agriculture, fisheries, forestry and horticulture). Here, we demonstrate how building strong relationships between conservation geneticists and primary industry scientists is leading to mutually-beneficial outcomes for both disciplines. Based on our collective experience as collaborative New Zealand-based scientists, we also provide insight for forging these cross-sector relationships.


Assuntos
Conservação dos Recursos Naturais , Genômica , Comunicação Interdisciplinar , Agricultura , Pesqueiros , Agricultura Florestal , Colaboração Intersetorial , Nova Zelândia
2.
Genetics ; 200(4): 1297-312, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26078279

RESUMO

Convergent evolution is the independent evolution of similar traits in different species or lineages of the same species; this often is a result of adaptation to similar environments, a process referred to as convergent adaptation. We investigate here the molecular basis of convergent adaptation in maize to highland climates in Mesoamerica and South America, using genome-wide SNP data. Taking advantage of archaeological data on the arrival of maize to the highlands, we infer demographic models for both populations, identifying evidence of a strong bottleneck and rapid expansion in South America. We use these models to then identify loci showing an excess of differentiation as a means of identifying putative targets of natural selection and compare our results to expectations from recently developed theory on convergent adaptation. Consistent with predictions across a wide parameter space, we see limited evidence for convergent evolution at the nucleotide level in spite of strong similarities in overall phenotypes. Instead, we show that selection appears to have predominantly acted on standing genetic variation and that introgression from wild teosinte populations appears to have played a role in highland adaptation in Mexican maize.


Assuntos
Adaptação Fisiológica/genética , Zea mays/genética , Zea mays/fisiologia , Aclimatação/genética , Evolução Molecular , Loci Gênicos/genética , Variação Genética , Genômica , Haplótipos , Modelos Biológicos , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
PLoS Genet ; 9(1): e1003215, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349638

RESUMO

Switchgrass (Panicum virgatum L.) is a perennial grass that has been designated as an herbaceous model biofuel crop for the United States of America. To facilitate accelerated breeding programs of switchgrass, we developed both an association panel and linkage populations for genome-wide association study (GWAS) and genomic selection (GS). All of the 840 individuals were then genotyped using genotyping by sequencing (GBS), generating 350 GB of sequence in total. As a highly heterozygous polyploid (tetraploid and octoploid) species lacking a reference genome, switchgrass is highly intractable with earlier methodologies of single nucleotide polymorphism (SNP) discovery. To access the genetic diversity of species like switchgrass, we developed a SNP discovery pipeline based on a network approach called the Universal Network-Enabled Analysis Kit (UNEAK). Complexities that hinder single nucleotide polymorphism discovery, such as repeats, paralogs, and sequencing errors, are easily resolved with UNEAK. Here, 1.2 million putative SNPs were discovered in a diverse collection of primarily upland, northern-adapted switchgrass populations. Further analysis of this data set revealed the fundamentally diploid nature of tetraploid switchgrass. Taking advantage of the high conservation of genome structure between switchgrass and foxtail millet (Setaria italica (L.) P. Beauv.), two parent-specific, synteny-based, ultra high-density linkage maps containing a total of 88,217 SNPs were constructed. Also, our results showed clear patterns of isolation-by-distance and isolation-by-ploidy in natural populations of switchgrass. Phylogenetic analysis supported a general south-to-north migration path of switchgrass. In addition, this analysis suggested that upland tetraploid arose from upland octoploid. All together, this study provides unparalleled insights into the diversity, genomic complexity, population structure, phylogeny, phylogeography, ploidy, and evolutionary dynamics of switchgrass.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Panicum/genética , Poliploidia , Biocombustíveis , Evolução Biológica , Mapeamento Cromossômico , Genoma de Planta , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Análise de Sequência de DNA , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...