Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Cardiol Cardiovasc Risk Prev ; 11: 200121, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34806090

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is suspected to mainly be more deleterious in patients with underlying cardiovascular diseases (CVD). There is a strong association between hypertension and COVID-19 severity. The binding of SARS-CoV-2 to the angiotensin-converting enzyme 2 (ACE2) leads to deregulation of the renin-angiotensin-aldosterone system (RAAS) through down-regulation of ACE2 with subsequent increment of the harmful Ang II serum levels and reduction of the protective Ang-(1-7). Both angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) are commonly used to manage hypertension. OBJECTIVE: Objective was to illustrate the potential link between hypertension and COVID-19 regarding the role of angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) in hypertensive patients with COVID-19. METHODS: We carried out comprehensive databases search from late December 2019 to early January 2021 by using online engines of Web of Science, Research gate, Scopus, Google Scholar, and PubMed for published and preprinted articles. RESULTS: The present study's findings showed that hypertension is regarded as an independent risk factor for COVID-19 severity. Both ACEIs and ARBs are beneficial in managing hypertensive patients. CONCLUSION: This study concluded that hypertension increases COVID-19 severity due to underlying endothelial dysfunctions and coagulopathy. COVID-19 might augment the hypertensive complications due to down-regulation of ACE2. The use of ACEIs or ARBs might be beneficial in the management of hypertensive patients with COVID-19.

2.
Front Neurosci ; 15: 651471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054412

RESUMO

Fipronil (FIP) is an N-phenylpyrazole insecticide that is used extensively in public health and agriculture against a wide range of pests. Exposure to FIP is linked to negative health outcomes in humans and animals including promoting neuronal cell injury, which results in apoptosis through the production of reactive oxygen species (ROS). Therefore, the purpose of the current study was to investigate the neuroprotective effects of cerium oxide nanoparticles (CeNPs) on neuronal dysfunction induced by FIP in albino rats. Male rats were randomly classified into four groups: control, FIP (5 mg/kg bwt), CeNPs (35 mg/kg bwt), and FIP + CeNPs (5 (FIP) + 35 (CeNPs) mg/kg bwt), which were treated orally once daily for 28 consecutive days. Brain antioxidant parameters, histopathology, and mRNA expression of genes related to brain function were evaluated. The results revealed oxidative damage to brain tissues in FIP-treated rats indicated by the elevated levels of malondialdehyde (MDA) and nitric oxide (NO) levels and reduced activities of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx). On the other hand, the FIP's group that was treated with CeNPs showed decrease in MDA and NO levels and increase in SOD and GPx enzymes activity. Besides, FIP-treated rats showed decreased butyrylcholinesterase (BuChE) activity in comparison to the FIP + CeNPs group. Moreover, FIP caused up-regulation of the expression of neuron-specific enolase (NSE), caspase-3, and glial fibrillary acidic protein (GFAP) but down-regulation of B-cell lymphoma-2 (BCL-2) expression. But the FIP + CeNPs group significantly down-regulated the GFAP, NSE, and caspase-3 and up-regulated the gene expression of BCL-2. Additionally, the FIP-treated group of rats had clear degenerative lesions in brain tissue that was reversed to nearly normal cerebral architecture by the FIP + CeNPs treatment. Immunohistochemical examination of brain tissues of rats-treated with FIP showed abundant ionized calcium-binding adaptor molecule 1 (Iba-1) microglia and caspase-3 and apoptotic cells with nearly negative calbindin and synaptophysin reaction, which were countered by FIP + CeNPs treatment that revealed a critical decrease in caspase-3, Iba-1 reaction with a strong calbindin positive reaction in most of the Purkinje cells and strong synaptophysin reaction in the cerebrum and cerebellum tissues. Based on reported results herein, CeNPs treatment might counteract the neurotoxic effect of FIP pesticide via an antioxidant-mediated mechanism.

3.
Sci Rep ; 11(1): 1310, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446707

RESUMO

Fipronil (FIP) is a phenylpyrazole insecticide that is commonly used in agricultural and veterinary fields for controlling a wide range of insects, but it is a strong environmentally toxic substance. Exposure to FIP has been reported to increase the hepatic fat accumulation through altered lipid metabolism, which ultimately can contribute to nonalcoholic fatty liver disease (NAFLD) development. The present study aimed to examine the function of cerium oxide nanoparticles (CeNPs) in protecting against hepatotoxicity and lipogenesis induced by FIP. Twenty-eight male albino rats were classified into four groups: FIP (5 mg/kg/day per os), CTR, CeNPs (35 mg/kg/day p.o.), and FIP + CeNPs (5 (FIP) + 35 (CeNPs) mg/kg/day p.o.) for 28 consecutive days. Serum lipid profiles, hepatic antioxidant parameters and pathology, and mRNA expression of adipocytokines were assessed. The results revealed that FIP increased cholesterol, height-density lipoprotein, triacylglyceride, low-density lipoprotein (LDL-c), and very-low-density lipoprotein (VLDL-c) concentrations. It also increased nitric oxide (NO) and malondialdehyde (MDA) hepatic levels and reduced glutathione peroxidase (GPx) and superoxide dismutase (SOD) enzyme activities. Additionally, FIP up-regulated the fatty acid-binding protein (FABP), acetyl Co-A carboxylase (ACC1), and peroxisome proliferator-activated receptor-alpha (PPAR-α). Immunohistochemically, a strong proliferation of cell nuclear antigen (PCNA), ionized calcium-binding adapter molecule 1 (Iba-1), cyclooxygenase-2 (COX-2) reactions in the endothelial cells of the hepatic sinusoids, and increased expression of caspase3 were observed following FIP intoxication. FIP also caused histological changes in hepatic tissue. The CeNPs counteracted the hepatotoxic effect of FIP exposure. So, this study recorded an ameliorative effect of CeNPs against FIP-induced hepatotoxicity.


Assuntos
Cério/farmacologia , Lipogênese/efeitos dos fármacos , Nanopartículas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica , Pirazóis , Animais , Masculino , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Pirazóis/efeitos adversos , Pirazóis/farmacologia , Ratos
4.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751827

RESUMO

Fipronil (FIP) is an insecticide commonly used in many fields, such as agriculture, veterinary medicine, and public health, and recently it has been proposed as a potential endocrine disrupter. The purpose of this study was to inspect the reproductive impacts of FIP and the possible protective effects of cerium nanoparticles (CeNPs) on male albino rats. Rats received FIP (5 mg/kg bwt; 1/20 LD50), CeNPs (35 mg/kg bwt) and FIP+CeNPs per os daily for 28 days. Serum testosterone levels, testicular oxidative damage, histopathological and immunohistochemical changes were evaluated. FIP provoked testicular oxidative damage as indicated by decreased serum testosterone (≈60%) and superoxide dismutase (≈50%), glutathione peroxidase activity (≈46.67%) and increased malondialdehyde (≈116.67%) and nitric oxide (≈87.5%) levels in testicular tissues. Furthermore, FIP induced edematous changes and degeneration within the seminiferous tubules, hyperplasia, vacuolations, and apoptosis in the epididymides. In addition, FIP exposure upregulated interleukin-1ß (IL-1ß), nitric oxide synthase 2 (NOS), caspase-3 (Casp3) and downregulated the Burkitt-cell lymphomas (BCL-2), inhibin B proteins (IBP), and androgen receptor (Ar) mRNA expressions Casp3, nitric oxide synthase (iNOS), ionized calcium-binding adapter molecule 1(IBA1), and IL-1ß immunoreactions were increased. Also, reduction of proliferating cell nuclear antigen (PCNA), mouse vasa homologue (MVH), and SOX9 protein reactions were reported. Interestingly, CeNPs diminished the harmful impacts of FIP on testicular tissue by decreasing lipid peroxidation, apoptosis and inflammation and increasing the antioxidant activities. The findings reported herein showed that the CeNPs might serve as a supposedly new and efficient protective agent toward reproductive toxicity caused by the FIP insecticide in white male rats.


Assuntos
Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Cério/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/tratamento farmacológico , Inseticidas/efeitos adversos , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Pirazóis/efeitos adversos , Animais , Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Infertilidade Masculina/sangue , Infertilidade Masculina/patologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ratos , Testículo/metabolismo , Testículo/patologia , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA