Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(12): 8308-8319, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483324

RESUMO

Modulation of absorbance and emission is key for the design of chiral chromophores. Accessing a series of compounds absorbing and emitting (circularly polarized) light over a wide spectral window and often toward near-infrared is of practical value in (chir)optical applications. Herein, by late-stage functionalization on derivatives bridging triaryl methyl and helicene domains, we have achieved the regioselective triple introduction of para electron-donating or electron-withdrawing substituents. Extended tuning of electronic (e.g., E1/2red -1.50 V → -0.68 V) and optical (e.g., emission covering from 550 to 850 nm) properties is achieved for the cations and neutral radicals; the latter compounds being easily prepared by mono electron reductions under electrochemical or chemical conditions. While luminescence quantum yields can be increased up to 70% in the cationic series, strong Cotton effects are obtained for certain radicals at low energies (λabs ∼ 700-900 nm) with gabs values above 10-3. The open-shell electronic nature of the radicals was further characterized by electron paramagnetic resonance revealing an important spin density delocalization that contributes to their persistence.

2.
J Phys Chem Lett ; 12(14): 3679-3684, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33829785

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy is an established technique to site-specifically monitor conformational changes of spin-labeled biomolecules. Emerging in-cell EPR approaches aiming to address spin-labeled proteins in their native environment still struggle to reach a broad applicability and to target physiologically relevant protein concentrations. Here, we present a comparative in vitro and in-cell double electron-electron resonance (DEER) study demonstrating that nanomolar protein concentrations are at reach to measure distances up to 4.5 nm between protein sites carrying commercial gadolinium spin labels.


Assuntos
Elétrons , Proteínas/análise , Espectroscopia de Ressonância de Spin Eletrônica , Células HEK293 , Humanos
3.
Structure ; 29(2): 114-124.e3, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32966763

RESUMO

Bcl-2 proteins orchestrate the mitochondrial pathway of apoptosis, pivotal for cell death. Yet, the structural details of the conformational changes of pro- and antiapoptotic proteins and their interactions remain unclear. Pulse dipolar spectroscopy (double electron-electron resonance [DEER], also known as PELDOR) in combination with spin-labeled apoptotic Bcl-2 proteins unveils conformational changes and interactions of each protein player via detection of intra- and inter-protein distances. Here, we present the synthesis and characterization of pro-apoptotic BimBH3 peptides of different lengths carrying cysteines for labeling with nitroxide or gadolinium spin probes. We show by DEER that the length of the peptides modulates their homo-interactions in the absence of other Bcl-2 proteins and solve by X-ray crystallography the structure of a BimBH3 tetramer, revealing the molecular details of the inter-peptide interactions. Finally, we prove that using orthogonal labels and three-channel DEER we can disentangle the Bim-Bim, Bcl-xL-Bcl-xL, and Bim-Bcl-xL interactions in a simplified interactome.


Assuntos
Proteína 11 Semelhante a Bcl-2/química , Multimerização Proteica , Animais , Apoptose , Proteína 11 Semelhante a Bcl-2/metabolismo , Sítios de Ligação , Humanos , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Ratos , Proteína bcl-X/química , Proteína bcl-X/metabolismo
4.
ChemistryOpen ; 8(8): 1057-1065, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463171

RESUMO

The availability of bioresistant spin labels is crucial for the optimization of site-directed spin labeling protocols for EPR structural studies of biomolecules in a cellular context. As labeling can affect proteins' fold and/or function, having the possibility to choose between different spin labels will increase the probability to produce spin-labeled functional proteins. Here, we report the synthesis and characterization of iodoacetamide- and maleimide-functionalized spin labels based on the gem-diethyl pyrroline structure. The two nitroxide labels are compared to conventional gem-dimethyl analogs by site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy, using two water soluble proteins: T4 lysozyme and Bid. To foster their use for structural studies, we also present rotamer libraries for these labels, compatible with the MMM software. Finally, we investigate the "true" biocompatibility of the gem-diethyl probes comparing the resistance towards chemical reduction of the NO group in ascorbate solutions and E. coli cytosol at different spin concentrations.

5.
ChemistryOpen ; 8(8): 1035, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31406651

RESUMO

Invited for this month's cover picture is the group of Professor Enrica Bordignon at the Ruhr University Bochum. The cover picture shows an artistic view of E. coli cells and two spin-labeled recombinantly produced proteins, which can be inserted into the cells for EPR studies. The primary sequence of the proteins is schematically shown with the one-letter amino acid code, and cysteine residues are functionalized with the two new gem diethyl nitroxide spin labels designed to better sustain the reducing cellular environment. Read the full text of their Full Paper at 10.1002/open.201900119.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...