Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Innovation (Camb) ; 5(4): 100612, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38756954

RESUMO

Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.

2.
Anal Chem ; 96(19): 7436-7443, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38700939

RESUMO

In carbon-compound-specific isotope analysis (carbon CSIA) of environmental micropollutants, purification of samples is often required to guarantee accurate measurements of a target compound. A companion paper has brought forward an innovative approach to couple a quartz crystal microbalance (QCM) with high-performance liquid chromatography (HPLC) for the online quantification of matrices during a gradient HPLC purification. This work investigates the benefit for isotope analysis of polar micropollutants typically present in environmental samples. Here, we studied the impact of the natural organic matter (NOM) on the isotopic integrity of model analytes and the suitability of the NOM-to-analyte ratio as a proxy for the sample purity. We further investigated limitations and enhancement of HPLC purification using QCM on C18 and C8 phases for single and multiple targets. Strong isotopic shifts of up to 3.3% toward the isotopic signature of NOM were observed for samples with an NOM-to-analyte ratio ≥10. Thanks to QCM, optimization of matrix removal of up to 99.8% of NOM was possible for late-eluting compounds. The efficiency of HPLC purification deteriorated when aiming for simultaneous purification of two or three compounds, leading to up to 2.5% less NOM removal. Our results suggest that one optimized HPLC purification can be achieved through systematic screening of 3 to 5 different gradients, thereby leading to a shift of the boundaries of accurate carbon CSIA by up to 2 orders of magnitude toward lower micropollutant concentrations.

3.
Analyst ; 149(10): 2978-2987, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38602145

RESUMO

Cultivation-independent molecular biological methods are essential to rapidly quantify pathogens like Legionella pneumophila (L. pneumophila) which is important to control aerosol-generating engineered water systems. A standard addition method was established to quantify L. pneumophila in the very complex matrix of process water and air of exhaust air purification systems in animal husbandry. Therefore, cryopreserved standards of viable L. pneumophila were spiked in air and water samples to calibrate the total bioanalytical process which includes cell lysis, DNA extraction, and qPCR. A standard addition algorithm was employed for qPCR to determine the initial concentration of L. pneumophila. In mineral water, the recovery rate of this approach (73%-134% within the concentration range of 100-5000 Legionella per mL) was in good agreement with numbers obtained from conventional genomic unit (GU) calibration with DNA standards. In air samples of biotrickling filters, in contrast, the conventional DNA standard approach resulted in a significant overestimation of up to 729%, whereas our standard addition gave a more realistic recovery of 131%. With this proof-of-principle study, we were able to show that the molecular biology-based standard addition approach is a suitable method to determine realistic concentrations of L. pneumophila in air and process water samples of biotrickling filter systems. Moreover, this quantification strategy is generally a promising method to quantify pathogens in challenging samples containing a complex microbiota and the classical GU approach used for qPCR leads to unreliable results.


Assuntos
Legionella pneumophila , Reação em Cadeia da Polimerase em Tempo Real , Legionella pneumophila/isolamento & purificação , Legionella pneumophila/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Filtração/métodos , Filtração/instrumentação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/análise , Microbiologia da Água , Microbiologia do Ar
4.
Anal Bioanal Chem ; 416(12): 3045-3058, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38546794

RESUMO

Increasing demand for size-resolved identification and quantification of microplastic particles in drinking water and environmental samples requires the adequate validation of methods and techniques that can be used for this purpose. In turn, the feasibility of such validation depends on the existence of suitable certified reference materials (CRM). A new candidate reference material (RM), consisting of polyethylene terephthalate (PET) particles and a water matrix, has been developed. Here, we examine its suitability with respect to a homogeneous and stable microplastic particle number concentration across its individual units. A measurement series employing tailor-made software for automated counting and analysis of particles (TUM-ParticleTyper 2) coupled with Raman microspectroscopy showed evidence of the candidate RM homogeneity with a relative standard deviation of 12% of PET particle counts involving particle sizes >30 µm. Both the total particle count and the respective sums within distinct size classes were comparable in all selected candidate RM units. We demonstrate the feasibility of production of a reference material that is sufficiently homogeneous and stable with respect to the particle number concentration.

5.
Anal Chem ; 95(42): 15505-15513, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37831967

RESUMO

Selectivity in solid-phase extraction (SPE) materials has become increasingly important for analyte enrichment in sensitive analytical workflows to alleviate detrimental matrix effects. Molecular-level investigation of matrix constituents, which are preferentially extracted or excluded, can provide the analytical chemist with valuable information to learn about their control on sorbent selectivity. In this work, we employ nontargeted Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to elucidate the molecular chemodiversity of freshwater-derived dissolved organic matter (DOM) extracted by the selective model sorbent ß-cyclodextrin polymer (ß-CDP) in comparison to conventional, universal SPE sorbents (i.e., Oasis HLB, Supel-Select HLB, and LiChrolut EN). Statistical analysis of MS data corroborated the highly selective nature of ß-CDP by revealing the extracted DOM spectra that are most dissimilar to original compositions. We found that its selectivity was characterized by pronounced discrimination against highly oxygenated and unsaturated DOM compounds, which were associated with the classes of lignin-like, tannin-like, and carboxylic-rich alicyclic molecules. In contrast, conventional sorbents excluded less highly oxygenated compounds and showed a more universal extraction behavior for a wide range of DOM compositional space. We lay these findings in a larger context that aids the analyst in obtaining an a priori estimate of sorbent selectivity toward any target analyte of interest serving thereby an optimization of sample preparation. This study highlights the great value of nontargeted ultrahigh-resolution MS for better understanding of targeted analytics and provides new insights into the selective sorption behavior of novel sorbents.

6.
Anal Chem ; 95(39): 14582-14591, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37721868

RESUMO

Cyclodextrin polymers (CDPs) are promising next-generation adsorbents in water purification technologies. The selectivity of the polymer derivate cross-linked with tetrafluoroterephthalonitrile (TFN-CDP) for nonionic and cationic micropollutants (MPs) over dissolved organic matter (DOM) renders the adsorbent also attractive for many analytical applications. The molecular drivers of the observed selectivity are, nonetheless, not yet fully understood. To provide new insights into the sorption mechanism, we (i) synthesized TFN-CDPs with different cavity sizes (α-, ß-, γ-CDP); (ii) assessed their extraction efficiencies for selected nonionic MPs in competition with different DOM size fractions (<1, 1-3, 3-10, >10 kDa) to test for size-selectivity; and (iii) performed nontargeted, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry analysis on CDP-extracted DOM compounds (<1 kDa) to probe for molecular sorbate properties governing their selective sorption. First, no evidence of size-selectivity was obtained through either the different CD cavity sizes (i) or the two independent approaches (ii) and (iii). Second, we found a dominant impact of sorbate oxygenation and polarity on the extraction of DOM and MPs, respectively, with relatively oxygen-poor/nonpolar molecules favorably retained on all α-, ß-, and γ-CDP. Third, our data indicates exclusion of an anionic matrix, such as carboxylic acids, but preferential sorption of cationic nitrogen-bearing DOM, pointing at repulsive and attractive forces with the negatively charged cross-linker as a likely reason. Therefore, we ascribe TFN-CDP's selectivity to nonpolar and electrostatic interactions between MPs/DOM and the polymer building blocks. These molecular insights can further aid in the optimization of efficient and selective sorbent design for environmental and analytical applications.

7.
Anal Bioanal Chem ; 415(15): 2947-2961, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286906

RESUMO

Accurate quantification of small microplastics in environmental and food samples is a prerequisite for studying their potential hazard. Knowledge of numbers, size distributions and polymer type for particles and fibers is particularly relevant in this respect. Raman microspectroscopy can identify particles down to 1 [Formula: see text]m in diameter. Here, a fully automated procedure for quantifying microplastics across the entire defined size range is presented as the core of the new software TUM-ParticleTyper 2. This software implements the theoretical approaches of random window sampling and on-the-fly confidence interval estimation during ongoing measurements. It also includes improvements to image processing and fiber recognition (when compared to the previous software TUM-ParticleTyper for analysis of particles/fibers [Formula: see text] [Formula: see text]m), and a new approach to adaptive de-agglomeration. Repeated measurements of internally produced secondary reference microplastics were evaluated to assess the precision of the whole procedure.

8.
Membranes (Basel) ; 13(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37367757

RESUMO

Reverse osmosis (RO) is a widely used membrane technology for producing process water or tap water that is receiving increased attention due to water scarcity caused by climate change. A significant challenge in any membrane filtration is the presence of deposits on the membrane surfaces, which negatively affect filtration performance. Biofouling, the formation of biological deposits, poses a significant challenge in RO processes. Early detection and removal of biofouling are essential for effective sanitation and prevention of biological growth in RO-spiral wound modules. This study introduces two methods for the early detection of biofouling, capable of identifying initial stages of biological growth and biofouling in the spacer-filled feed channel. One method utilizes polymer optical fibre sensors that can be easily integrated into standard spiral wound modules. Additionally, image analysis was used to monitor and analyze biofouling in laboratory experiments, providing a complementary approach. To validate the effectiveness of the developed sensing approaches, accelerated biofouling experiments were conducted using a membrane flat module, and the results were compared with common online and offline detection methods. The reported approaches enable the detection of biofouling before known online parameters become indicative, effectively providing an online detection with sensitivities otherwise only achieved through offline characterization methods.

9.
Anal Chem ; 95(20): 7839-7848, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37167407

RESUMO

Compound-specific isotope analysis (CSIA) of organic water contaminants can provide important information about their sources and fate in the environment. Analyte enrichment from water remains nonetheless a critical yet inevitable step before measurement. Commercially available solid-phase extraction (SPE) sorbents are inherently nonselective leading to co-extraction of concurrent dissolved organic matter (DOM) and in turn to analytical interferences, especially for low-occurring contaminants. Here, we (i) increased extraction selectivity by synthesizing cyclodextrin polymers (α-, ß-, γ-CDP) as SPE sorbents, (ii) assessed their applicability to carbon isotope analysis for a selection of pesticides, and (iii) compared them with commonly used commercial sorbents. Extraction with ß-CDP significantly reduced backgrounds in gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and enhanced sensitivity by a factor of 7.5, which was further confirmed by lower carbon-normalized CDOM/Canalyte ratios in corresponding extracts as derived from dissolved organic carbon (DOC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Gibbs free energies of adsorption demonstrated weak competition between DOM and analyte on the three CDPs. No isotopic fractionation (Δδ13C within ± 0.3‰) was observed for the investigated pesticides after using ß-CDP as an SPE sorbent covering a range of concentrations (5-500 µg L-1), flow velocities (5-40 cm min-1), and sorbent regeneration (up to six times). The present study highlights the benefit of selecting innovative extraction sorbents to avoid interferences in advance. This strategy in combination with existing cleanup approaches offers new prospects for CSIA at field concentrations of tens to hundreds of nanograms per liter.

10.
Anal Bioanal Chem ; 415(21): 5139-5149, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37204446

RESUMO

Legionella pneumophila are pathogenic bacteria that can be found in high concentrations in artificial water systems like evaporative cooling towers, which have been the source of frequent outbreaks in recent years. Since inhaled L. pneumophila can lead to Legionnaires' disease, the development of suitable sampling and rapid analysis strategies for these bacteria in aerosols is therefore of great relevance. In this work, different concentrations of viable L. pneumophila Sg 1 were nebulized and sampled by the cyclone sampler Coriolis® µ under defined conditions in a bioaerosol chamber. To quantify intact Legionella cells, the collected bioaerosols were subsequently analyzed by immunomagnetic separation coupled with flow cytometry (IMS-FCM) on the platform rqmicro.COUNT. For analytical comparison, measurements with qPCR and cultivation were performed. Limits of detection (LOD) of 2.9 × 103 intact cells m-3 for IMS-FCM and 7.8 × 102 intact cells m-3 for qPCR indicating a comparable sensitivity as in culture (LOD = 1.5 × 103 culturable cells m-3). Over a working range of 103 - 106 cells mL-1, the analysis of nebulized and collected aerosol samples with IMS-FCM and qPCR provides higher recovery rates and more consistent results than by cultivation. Overall, IMS-FCM is a suitable culture-independent method for quantification of L. pneumophila in bioaerosols and is promising for field application due to its simplicity in sample preparation.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Separação Imunomagnética/métodos , Citometria de Fluxo , Aerossóis e Gotículas Respiratórios , Doença dos Legionários/microbiologia , Microbiologia da Água
11.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047104

RESUMO

Extracellular vesicles (EVs) have enormous potential for the implementation of liquid biopsy and as effective drug delivery means, but the fulfilment of these expectations requires overcoming at least two bottlenecks relative to their purification, namely the finalization of reliable and affordable protocols for: (i) EV sub-population selective isolation and (ii) the scalability of their production/isolation from complex biological fluids. In this work, we demonstrated that these objectives can be achieved by a conceptually new affinity chromatography platform composed of a macroporous epoxy monolith matrix functionalized with anti-CD63 nanobodies with afflux of samples and buffers regulated through a pump. Such a system successfully captured and released integral EVs from urine samples and showed negligible unspecific binding for circulating proteins. Additionally, size discrimination of eluted EVs was achieved by different elution approaches (competitive versus pH-dependent). The physical characteristics of monolith material and the inexpensive production of recombinant nanobodies make scaling-up the capture unit feasible and affordable. Additionally, the availability of nanobodies for further specific EV biomarkers will allow for the preparation of monolithic affinity filters selective for different EV subclasses.


Assuntos
Líquidos Corporais , Vesículas Extracelulares , Anticorpos de Domínio Único , Biomarcadores/metabolismo , Líquidos Corporais/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Anticorpos de Domínio Único/metabolismo , Tetraspanina 30
12.
Appl Environ Microbiol ; 89(3): e0019623, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36877057

RESUMO

Autotrophic nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms fix CO2 and oxidize Fe(II) coupled to denitrification, influencing carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. However, the distribution of electrons from Fe(II) oxidation to either biomass production (CO2 fixation) or energy generation (nitrate reduction) in autotrophic NRFeOx microorganisms has not been quantified. We therefore cultivated the autotrophic NRFeOx culture KS at different initial Fe/N ratios, followed geochemical parameters, identified minerals, analyzed N isotopes, and applied numerical modeling. We found that at all initial Fe/N ratios, the ratios of Fe(II)oxidized to nitratereduced were slightly higher (5.11 to 5.94 at Fe/N ratios of 10:1 and 10:0.5) or lower (4.27 to 4.59 at Fe/N ratios of 10:4, 10:2, 5:2, and 5:1) than the theoretical ratio for 100% Fe(II) oxidation being coupled to nitrate reduction (5:1). The main N denitrification product was N2O (71.88 to 96.29% at Fe/15N ratios of 10:4 and 5:1; 43.13 to 66.26% at an Fe/15N ratio of 10:1), implying that denitrification during NRFeOx was incomplete in culture KS. Based on the reaction model, on average 12% of electrons from Fe(II) oxidation were used for CO2 fixation while 88% of electrons were used for reduction of NO3- to N2O at Fe/N ratios of 10:4, 10:2, 5:2, and 5:1. With 10 mM Fe(II) (and 4, 2, 1, or 0.5 mM nitrate), most cells were closely associated with and partially encrusted by the Fe(III) (oxyhydr)oxide minerals, whereas at 5 mM Fe(II), most cells were free of cell surface mineral precipitates. The genus Gallionella (>80%) dominated culture KS regardless of the initial Fe/N ratios. Our results showed that Fe/N ratios play a key role in regulating N2O emissions, for distributing electrons between nitrate reduction and CO2 fixation, and for the degree of cell-mineral interactions in the autotrophic NRFeOx culture KS. IMPORTANCE Autotrophic NRFeOx microorganisms that oxidize Fe(II), reduce nitrate, and produce biomass play a key role in carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. Electrons from Fe(II) oxidation are used for the reduction of both carbon dioxide and nitrate. However, the question is how many electrons go into biomass production versus energy generation during autotrophic growth. Here, we demonstrated that in the autotrophic NRFeOx culture KS cultivated at Fe/N ratios of 10:4, 10:2, 5:2, and 5:1, ca. 12% of electrons went into biomass formation, while 88% of electrons were used for reduction of NO3- to N2O. Isotope analysis also showed that denitrification during NRFeOx was incomplete in culture KS and the main N denitrification product was N2O. Therefore, most electrons stemming from Fe(II) oxidation seemed to be used for N2O formation in culture KS. This is environmentally important for the greenhouse gas budget.


Assuntos
Compostos Férricos , Nitratos , Nitratos/metabolismo , Compostos Férricos/metabolismo , Dióxido de Carbono , Elétrons , Compostos Ferrosos/metabolismo , Oxirredução , Processos Autotróficos , Ferro , Minerais/metabolismo , Desnitrificação
13.
J Am Soc Mass Spectrom ; 34(4): 525-537, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36971362

RESUMO

For a generation or more, the mass spectrometry that developed at the frontier of molecular biology was worlds apart from isotope ratio mass spectrometry, a label-free approach done on optimized gas-source magnetic sector instruments. Recent studies show that electrospray-ionization Orbitraps and other mass spectrometers widely used in the life sciences can be fine-tuned for high-precision isotope ratio analysis. Since isotope patterns form everywhere in nature based on well-understood principles, intramolecular isotope measurements allow unique insights into a fascinating range of research topics. This Perspective introduces a wider readership to current topics in stable isotope research with the aim of discussing how soft-ionization mass spectrometry coupled with ultrahigh mass resolution can enable long-envisioned progress. We highlight novel prospects of observing isotopes in intact polar compounds and speculate on future directions of this adventure into the overlapping realms of biology, chemistry, and geology.

14.
Chemosphere ; 322: 138226, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36828114

RESUMO

Degradation of the widespread herbicide atrazine has been intensively studied in soils, while its degradation in groundwater has received less attention. This work studied atrazine degradation in contaminated groundwater adjacent to its production plant. The degradation potential was first explored in groundwater enrichment cultures. A broad potential for microbial atrazine degradation was observed when atrazine served as the sole nitrogen source, even when incubated with nitrate. Hydroxyatrazine was formed by the cultures, while desethylatrazine and desisopropylatrazine were not detected. Both the atzA and the trzN genes were identified by quantitative PCR analysis, with a clear dominance of atzA. Carbon isotope enrichments throughout the degradation process varied between the different cultures, with ε values ranging from -0.6 to -5.5‰. This implies corresponding uncertainties when using compound-specific isotope analysis to estimate degradation extents. In the field samples, in-situ degradation was reflected by a high percentage of metabolites, with hydroxyatrazine accounting for >95% of the metabolites in most wells. Both atzA and trzN were detected in the groundwater at quantities of ≈102 to 106 copies mL-1, with a dominance of atzA over trzN. These results provide evidence of the high potential for atrazine hydrolysis in the contaminated groundwater.


Assuntos
Atrazina , Água Subterrânea , Herbicidas , Atrazina/análise , Hidrólise , Herbicidas/análise , Isótopos de Carbono/análise , Biodegradação Ambiental
15.
Anal Bioanal Chem ; 415(3): 391-404, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36346456

RESUMO

The SARS-CoV-2 pandemic has shown the importance of rapid and comprehensive diagnostic tools. While there are numerous rapid antigen tests available, rapid serological assays for the detection of neutralizing antibodies are and will be needed to determine not only the amount of antibodies formed after infection or vaccination but also their neutralizing potential, preventing the cell entry of SARS-CoV-2. Current active-virus neutralization assays require biosafety level 3 facilities, while virus-free surrogate assays are more versatile in applications, but still take typically several hours until results are available. To overcome these disadvantages, we developed a competitive chemiluminescence immunoassay that enables the detection of neutralizing SARS-CoV-2 antibodies within 7 min. The neutralizing antibodies bind to the viral receptor binding domain (RBD) and inhibit the binding to the human angiotensin-converting enzyme 2 (ACE2) receptor. This competitive binding inhibition test was characterized with a set of 80 samples, which could all be classified correctly. The assay results favorably compare to those obtained with a more time-intensive ELISA-based neutralization test and a commercial surrogate neutralization assay. Our test could further be used to detect individuals with a high total IgG antibody titer, but only a low neutralizing titer, as well as for monitoring neutralizing antibodies after vaccinations. This effective performance in SARS-CoV-2 seromonitoring delineates the potential for the test to be adapted to other diseases in the future.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática , Imunoensaio , Luminescência , Automação Laboratorial
16.
Adv Mater ; 35(6): e2207380, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36394175

RESUMO

Syngas, a mixture of CO and H2 , is a high-priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight-driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State-of-the-art catalytic systems and materials often fall short as application-oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light-harvesting metal-organic framework hosting two molecular catalysts is engineered to yield colloidal, water-stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In-depth fluorescence, X-ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all-in-one material toward application in solar energy-driven syngas generation.

17.
Analyst ; 148(1): 128-136, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36459096

RESUMO

The combination of single-cell Raman microspectroscopy (SCRM) and stable isotope probing (SIP) enables in situ tracking of carbon or hydrogen fluxes into microorganisms at the single-cell level. Therefore, it has high potential for the analysis of metabolic processes and biogeochemical cycles. However, especially for high throughput applications such as imaging or cell sorting, it is hampered by low Raman scattering intensities (and therefore long acquisition times). In order to overcome these limitations, this study brings forward a systematic investigation of Resonance Raman (RR) enhanced SCRM for SIP of bacterial carotenoids. Dynamic carbon uptake from 13C-glucose was successfully monitored and quantified utilizing 13C stable isotope-induced red-shifts of RR signals. High single-cell phenotypic heterogeneity was revealed in terms of carbon uptake and, unlike in previous studies, clear evidence for de novo synthesis of carotenoids was found. For the first time, hydrogen uptake into carotenoids was systematically investigated by deuterium labeling (providing a direct probe for metabolic activity of single cells). In carotenoid single-cell Resonance Raman (SCRR) spectra, a unique pattern of signal red-shifts and apparent blue-shifts was observed and quantitatively evaluated. Finally, a novel combined approach for simultaneous monitoring of carbon and hydrogen uptake revealed complementary effects in carotenoid SCRR spectra that can be analyzed in parallel. Overall, it was shown that the high RR intensity, simplicity of spectral features and straightforward signal processing make microbial carotenoids an ideal target for quantitative multi-element SIP, with great potential for high throughput applications.


Assuntos
Bactérias , Carbono , Bactérias/metabolismo , Carbono/metabolismo , Isótopos , Separação Celular , Hidrogênio/metabolismo , Análise Espectral Raman/métodos , Marcação por Isótopo/métodos
18.
Sensors (Basel) ; 22(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36433201

RESUMO

Affinity describes the non-covalent but selective interaction between an affinity binder (e.g., proteins, antibiotics, or antibodies) and its counterpart (e.g., bacteria). These affinity binders can serve to detect bacteria and respond to the need for selective concentration via affinity chromatography for trace analysis. By changing the pH value or salt and protein contents, affinity bindings can be reversed, and bacteria can be recovered for characterisation. Analytical microarrays use multiple affinity binders immobilised on the surface in a distinct pattern, which immensely reduces screening time for the discovery of superior binding motifs. Here, flow-based microarray systems can inform not only about binding, but also about desorption. In this work, we pioneer a screening assay for affinity binders against both gram-positive and negative bacteria based on an automated flow-based chemiluminescence (CL) microarray. Biotinylation of model organisms E. coli and E. faecalis enabled labelling with horseradish-peroxidase-coupled streptavidin, and detection with CL. Polymyxin B, an antibiotic against gram-negative bacteria, was found to bind both E. coli and E. faecalis. Simultaneous screening for desorption methods unexpectedly revealed methyl alpha-D-mannopyranoside as a promising buffer for desorption from Polymyxin B. This proof-of-principle study shows that our new platform greatly facilitates the screening of new affinity binders against bacteria, with promise for future automation.


Assuntos
Escherichia coli , Luminescência , Polimixina B , Análise em Microsséries , Anticorpos , Antibacterianos
19.
Chem Sci ; 13(41): 12164-12174, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36349115

RESUMO

Optimising catalyst materials for visible light-driven fuel production requires understanding complex and intertwined processes including light absorption and catalyst stability, as well as mass, charge, and energy transport. These phenomena can be uniquely combined (and ideally controlled) in porous host-guest systems. Towards this goal we designed model systems consisting of molecular complexes as catalysts and porphyrin metal-organic frameworks (MOFs) as light-harvesting and hosting porous matrices. Two MOF-rhenium molecule hybrids with identical building units but differing topologies (PCN-222 and PCN-224) were prepared including photosensitiser-catalyst dyad-like systems integrated via self-assembled molecular recognition. This allowed us to investigate the impact of MOF topology on solar fuel production, with PCN-222 assemblies yielding a 9-fold turnover number enhancement for solar CO2-to-CO reduction over PCN-224 hybrids as well as a 10-fold increase compared to the homogeneous catalyst-porphyrin dyad. Catalytic, spectroscopic and computational investigations identified larger pores and efficient exciton hopping as performance boosters, and further unveiled a MOF-specific, wavelength-dependent catalytic behaviour. Accordingly, CO2 reduction product selectivity is governed by selective activation of two independent, circumscribed or delocalised, energy/electron transfer channels from the porphyrin excited state to either formate-producing MOF nodes or the CO-producing molecular catalysts.

20.
Environ Sci Technol ; 56(18): 13008-13018, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069624

RESUMO

In situ bioremediation is a common remediation strategy for many groundwater contaminants. It was traditionally believed that (in the absence of mixing-limitations) a better in situ bioremediation is obtained in a more homogeneous medium where the even distribution of both substrate and bacteria facilitates the access of a larger portion of the bacterial community to a higher amount of substrate. Such conclusions were driven with the typical assumption of disregarding substrate inhibitory effects on the metabolic activity of enzymes at high concentration levels. To investigate the influence of pore matrix heterogeneities on substrate inhibition, we use a numerical approach to solve reactive transport processes in the presence of pore-scale heterogeneities. To this end, a rigorous reactive pore network model is developed and used to model the reactive transport of a self-inhibiting substrate under both transient and steady-state conditions through media with various, spatially correlated, pore-size distributions. For the first time, we explore on the basis of a pore-scale model approach the link between pore-size heterogeneities and substrate inhibition. Our results show that for a self-inhibiting substrate, (1) pore-scale heterogeneities can consistently promote degradation rates at toxic levels, (2) the effect reverses when the concentrations fall to levels essential for microbial growth, and (3) an engineered combination of homogeneous and heterogeneous media can increase the overall efficiency of bioremediation.


Assuntos
Água Subterrânea , Bactérias/metabolismo , Biodegradação Ambiental , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...