Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38091078

RESUMO

The present study aimed to investigate the protective potential of naringin (NG) against di-n-butyl phthalate (DBP)- induced testicular damage and impairment of spermatogenesis in rats. Forty-two male Wistar albino rats were divided into six equal groups, and treated orally, 3 times weekly for 8 successive weeks. Control vehicle group was administrated olive oil, naringin-treated group was administered NG (80 mg/kg), DBP 250- and DBP 500- intoxicated groups received DBP (250 mg/kg) and (500 mg/kg), respectively, NG + DBP 250 and NG + DBP 500 groups received NG, an hour prior to DBP 250 and 500 administration. The results revealed that DBP induced dose-dependent male reproductive dysfunctions, included a significant decrease in the serum testosterone level concomitantly with significant decreases in the sperm count, viability, and total motility. Meanwhile, DBP significantly increased the testicular malondialdehyde level with significant reductions of glutathione content and catalase activity. Histopathologically, DBP provoked absence of spermatozoa, degenerative changes in the cell layers of seminiferous tubules and a significant decrease in the thickness of the seminiferous tubules epithelium. Conversely, the concomitant treatment with NG, one hour before DBP 250 or 500- intoxication mitigated the dose-dependent reproductive dysfunctions induced by DBP, evidenced by significant increases of serum testosterone level, sperm motility, count and viability along with marked improvement of the oxidant/antioxidant status and testicular histoarchitecture. In conclusion, the findings recorded herein proved that NG could mitigate DBP-induced testicular damage and impairment of spermatogenesis, suggesting the perspective of using NG as a natural protective and therapeutic agent for alleviating the reproductive dysfunctions and improving reproductive performance, mainly via its potent antioxidant activity.

2.
Animals (Basel) ; 12(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35804622

RESUMO

This study examined the protective effect of earthworm extract (EE) on acrylamide (ACR)-induced reproductive dysfunction. Forty male rats were allocated into four groups (n = 10). The G I (control) group received distilled water (D.W.). The G II group received ACR (5 mg kg-1 B.W. in D.W.) 5 days per week, orally, for 3 weeks. The G III group was administered EE (300 mg kg-1 B.W in D.W.) 5 days per week, orally, for 3 weeks. The G IV group was pretreated with EE for 3 weeks and then co-treated with EE and ACR for an additional 3 weeks. ACR decreased the number of sperm, sperm viability, and total motility. However, it increased testosterone levels with no effect on the FSH or LH levels. Moreover, ACR increased the concentrations of malondialdehyde (MDA) and nitric oxide (NO). Meanwhile, it decreased the glutathione (GSH) concentration in testicular tissues. Notably, the expression levels of p53 and Ki-67 were increased in the degenerated spermatogenic cells and in the hyperplastic Leydig cells of the testis of the ACR-treated group, respectively. Acrylamide induced alterations in the testicular tissue architecture. Interestingly, EE restored the sperm parameters and recovered the testicular histological structures and the biochemical alterations induced by ACR. In conclusion, earthworm extract ameliorated ACR-induced reproductive toxicity via restoring the testicular antioxidant balance and suppressing p53 and Ki-67 expressions in testicular tissues.

3.
Reprod Toxicol ; 107: 81-89, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864119

RESUMO

Zearalenone (ZEN)-contaminated diets induce detrimental effects on the bovine reproduction. Recently, we reported that active sperm induce pro-inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. This study aimed to investigate the impact of presence of ZEN on the sperm-uterine crosstalk in vitro. BEECs monolayers were stimulated by ZEN (10, 100, and 1000 ng/mL) for 0, 3, 6, 12, or 24 h and gene expressions were analyzed by real-time PCR. Moreover, BEECs were pre-exposed to ZEN (10, 100, and 1000 ng/mL) for 24 h then, co-incubated with sperm for 6 h. Conditioned media (CM) from a sperm-BEECs co-culture, after pre-exposure to ZEN, were harvested and exploited to challenge either polymorphonuclear cells (PMNs) or sperm. Both PMNs phagocytic activity toward sperm and sperm motility parameters were then assessed. Results showed that ZEN alone induced pro-inflammatory responses in BEECs through the induction of mRNA expressions of pro-inflammatory cytokines (TNFA and IL1B) and PGES1 at different time points. Pre-exposure of BEECs to ZEN, amplified the sperm-triggered upregulation of pro-inflammatory cytokines (TNFA and IL1B) and chemokine IL8 mRNA abundance in BEECs. Sperm-BEECs conditioned media, primed by ZEN, stimulated the PMNs phagocytosis for sperm whereas suppressed sperm motility parameters. Taken together, these findings indicate that the presence of ZEN augments the pro-inflammatory cascade triggered by sperm in BEECs, provokes PMNs phagocytosis for sperm, and reduces sperm motility parameters. Such immunological reactions may create a hostile environment for sperm competence and survival in the bovine uterus, thus impair fertility.


Assuntos
Estrogênios não Esteroides/toxicidade , Inflamação , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Útero , Zearalenona/toxicidade , Animais , Bovinos , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Células Epiteliais/efeitos dos fármacos , Feminino , Inflamação/genética , Masculino , Neutrófilos/fisiologia , Fagocitose , Espermatozoides/fisiologia , Útero/citologia
4.
Andrologia ; 52(11): e13811, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32897594

RESUMO

The current study aimed to investigate the protective potential of Chlorella Vulgaris (CV) extract against the reproductive dysfunction induced by sodium nitrite toxicity. Forty-five male Wistar albino rats were assigned into five groups (n = 9). Control group received normal saline orally for 3 months, CV-treated: administered CV extract (70 mg/kg.BW) orally for 3 months, sodium nitrite-treated: received sodium nitrite (80 mg/kg.BW) orally for 3 months, co-treated: simultaneously received CV along with sodium nitrite treatment, orally, daily for 3 months, and CV-pre-treated: pre-treated with CV extract for 4 weeks followed by simultaneous treatment with sodium nitrite and CV extract for additional 8 weeks. Treatment with sodium nitrite significantly decreased serum testosterone and follicle-stimulating hormone concentrations, sperm count, motility, and viability. Besides, it decreased testicular superoxide dismutase and glutathione peroxidase activities while increased malondialdehyde concentration. This effect of sodium nitrite was associated with degenerative, necrotic, vascular, and inflammatory changes in testicular tissues. Treatment of sodium nitrite-intoxicated rats with CV in co-treated and pre-treated groups significantly prevented sodium nitrite-induced alterations of sperm parameters, hormonal concentrations, testicular oxidative-antioxidant status, and histological architecture. This study indicates that CV extract ameliorates the reproductive dysfunction induced by sodium nitrite toxicity via improving reproductive hormonal levels and testicular antioxidant activities.


Assuntos
Chlorella vulgaris , Nitrito de Sódio , Testículo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Humanos , Masculino , Metanol , Estresse Oxidativo , Extratos Vegetais/toxicidade , Ratos , Ratos Wistar , Nitrito de Sódio/toxicidade , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo
5.
Biochem Biophys Res Commun ; 532(1): 101-107, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32828539

RESUMO

Uterine infection with bacteria and the release of peptidoglycan (PGN), antigenic cell wall components of both Gram-negative and Gram-positive bacteria, can cause early pregnancy losses in ruminants, but the associated mechanisms remain unsolved. Day 7 blastocyst starts to secrete a minute amount of interferon-tau (IFNT) in the uterine horn which is required for early stage of maternal recognition of pregnancy (MRP) in ruminants, and it induces interferon stimulated genes (ISGs) for driving uterine receptivity in cows. This study investigated if PGN disrupts IFNT response through modulation of endometrial ISGs expressions. Cultured bovine endometrial epithelial cells (BEECs) were treated with embryo culture medium (ECM) or IFNT (1 ng/ml) in the presence or absence of a low level of PGN (10 pg/ml) for 24 h. A real-time PCR analyses revealed that the presence of PGN suppressed IFNT-induced ISGs (OAS1 and ISG15) and STAT1 expressions in BEECs. To visualize the impact of PGN in an ex-vivo model that resembles the in vivo status, endometrial explants were treated by IFNT (1 ng/ml) with or without PGN (10 pg/ml) for 12 h. PGN suppressed IFNT-induced gene expressions of the above factors, but not for IFNA receptor type1 (IFNAR1) or type2 (IFNAR2) in explants. Immunofluorescence analysis illustrated that PGN completely suppressed the IFNT-triggered OAS1 protein expression in the luminal epithelium of explants. Of note, PGN did not stimulate pro-inflammatory cytokines (TNFA and IL1B) or TLR2 mRNA expression in both models. These findings indicate that the presence of low levels of PGN suppresses ISGs expression induced by IFNT secreted from early embryo, at the luminal epithelium of the bovine endometrium. This could severely interfere with early stage of MRP processes in cows, leading to pregnancy failure.


Assuntos
Endométrio/metabolismo , Interferon Tipo I/metabolismo , Peptidoglicano/metabolismo , Proteínas da Gravidez/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Aborto Animal/imunologia , Aborto Animal/metabolismo , Aborto Animal/microbiologia , Animais , Blastocisto/imunologia , Blastocisto/metabolismo , Blastocisto/microbiologia , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/microbiologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Endométrio/imunologia , Endométrio/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Técnicas In Vitro , Interferon Tipo I/farmacologia , Troca Materno-Fetal/imunologia , Peptidoglicano/imunologia , Gravidez , Proteínas da Gravidez/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/genética , Doenças Uterinas/genética , Doenças Uterinas/metabolismo , Doenças Uterinas/veterinária , Útero/imunologia , Útero/metabolismo , Útero/microbiologia
6.
Mol Reprod Dev ; 85(3): 215-226, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29337420

RESUMO

In the cow, cryopreserved semen is inseminated into the uterus, and most of sperm are removed by backflow and phagocytes. Nevertheless, the mechanism responsible for sperm phagocytosis is unclear. Here, we used cultured bovine uterine epithelial cells (BUECs) to investigate the uterine response to sperm and the mechanism that activates polymorphonuclear neutrophils (PMNs). BUEC monolayers were co-cultured with different numbers of washed sperm obtained from cryopreserved semen (104 , 105 , and 106 sperm/ml) for 3 hr. Sperm dose-dependently up-regulated IL8 (Interleukin 8). Sperm at 106 /ml increased mRNA expression of TNFA (Tumor necrosis factor alpha), IL1B (Interleukin 1B), NFKB2 (Nuclear factor kappa B2), and C3 (Complement factor 3), as well as PGES (Prostaglandin E synthase) expression and PGE2 release. Live sperm, but not dead sperm, attached to BUECs, and dead sperm did not induce an acute inflammatory response. Time-dependent effects were evaluated by co-culture of 106 /ml washed sperm with BUECs for 0, 1, 3, and 6 hr. The number of detached sperm increased gradually toward 6 hr. Maximum mRNA expression of IL8, TNFA, IL1B, and NFKB2 was induced at 3 hr, while C3 continued to increase toward 6 hr. Sperm did not stimulate mRNA expression of anti-inflammatory cytokines TGFB1 (Transforming growth factor beta 1) or IL10 (Interleukin 10). Medium conditioned by sperm co-incubated with BUECs stimulated PMNs phagocytosis of sperm in vitro. Fresh media supplemented with low levels of IL1B, TNFA, and PGE2 up-regulated sperm phagocytosis by PMNs as well. In conclusion, our findings strongly suggest that the active sperm attach to BUECs and trigger uterine local innate immunity with induction of a pro-inflammatory response that enhances sperm phagocytosis by PMNs.


Assuntos
Endométrio/metabolismo , Células Epiteliais/metabolismo , Inflamação/metabolismo , Espermatozoides/metabolismo , Animais , Bovinos , Técnicas de Cocultura , Dinoprostona/metabolismo , Endométrio/citologia , Células Epiteliais/citologia , Feminino , Técnicas In Vitro , Interleucina-8/metabolismo , Masculino , NF-kappa B/metabolismo , Espermatozoides/citologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...