Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 142(1): 191-210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33929593

RESUMO

The genetic basis of brain tumor development is poorly understood. Here, leukocyte DNA of 21 patients from 15 families with ≥ 2 glioma cases each was analyzed by whole-genome or targeted sequencing. As a result, we identified two families with rare germline variants, p.(A592T) or p.(A817V), in the E-cadherin gene CDH1 that co-segregate with the tumor phenotype, consisting primarily of oligodendrogliomas, WHO grade II/III, IDH-mutant, 1p/19q-codeleted (ODs). Rare CDH1 variants, previously shown to predispose to gastric and breast cancer, were significantly overrepresented in these glioma families (13.3%) versus controls (1.7%). In 68 individuals from 28 gastric cancer families with pathogenic CDH1 germline variants, brain tumors, including a pituitary adenoma, were observed in three cases (4.4%), a significantly higher prevalence than in the general population (0.2%). Furthermore, rare CDH1 variants were identified in tumor DNA of 6/99 (6%) ODs. CDH1 expression was detected in undifferentiated and differentiating oligodendroglial cells isolated from rat brain. Functional studies using CRISPR/Cas9-mediated knock-in or stably transfected cell models demonstrated that the identified CDH1 germline variants affect cell membrane expression, cell migration and aggregation. E-cadherin ectodomain containing variant p.(A592T) had an increased intramolecular flexibility in a molecular dynamics simulation model. E-cadherin harboring intracellular variant p.(A817V) showed reduced ß-catenin binding resulting in increased cytosolic and nuclear ß-catenin levels reverted by treatment with the MAPK interacting serine/threonine kinase 1 inhibitor CGP 57380. Our data provide evidence for a role of deactivating CDH1 variants in the risk and tumorigenesis of neuroepithelial and epithelial brain tumors, particularly ODs, possibly via WNT/ß-catenin signaling.


Assuntos
Antígenos CD/genética , Neoplasias Encefálicas/genética , Caderinas/genética , Carcinoma/genética , Neoplasias Neuroepiteliomatosas/genética , Adenoma/genética , Adenoma/patologia , Compostos de Anilina/uso terapêutico , Animais , Diversidade de Anticorpos , Neoplasias Encefálicas/tratamento farmacológico , Carcinoma/tratamento farmacológico , DNA de Neoplasias/genética , Técnicas de Introdução de Genes , Variação Genética , Células HEK293 , Humanos , Neoplasias Neuroepiteliomatosas/tratamento farmacológico , Oligodendroglioma/genética , Oligodendroglioma/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Purinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Sequenciamento Completo do Genoma
2.
Acta Neuropathol ; 134(6): 905-922, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29030706

RESUMO

In search of novel germline alterations predisposing to tumors, in particular to gliomas, we studied a family with two brothers affected by anaplastic gliomas, and their father and paternal great-uncle diagnosed with prostate carcinoma. In this family, whole-exome sequencing yielded rare, simultaneously heterozygous variants in the Aicardi-Goutières syndrome (AGS) genes ADAR and RNASEH2B co-segregating with the tumor phenotype. AGS is a genetically induced inflammatory disease particularly of the brain, which has not been associated with a consistently increased cancer risk to date. By targeted sequencing, we identified novel ADAR and RNASEH2B variants, and a 3- to 17-fold frequency increase of the AGS mutations ADAR,c.577C>G;p.(P193A) and RNASEH2B,c.529G>A;p.(A177T) in the germline of familial glioma patients as well as in test and validation cohorts of glioblastomas and prostate carcinomas versus ethnicity-matched controls, whereby rare RNASEH2B variants were significantly more frequent in familial glioma patients. Tumors with ADAR or RNASEH2B variants recapitulated features of AGS, such as calcification and increased type I interferon expression. Patients carrying ADAR or RNASEH2B variants showed upregulation of interferon-stimulated gene (ISG) transcripts in peripheral blood as seen in AGS. An increased ISG expression was also induced by ADAR and RNASEH2B variants in tumor cells and was blocked by the JAK inhibitor Ruxolitinib. Our data implicate rare variants in the AGS genes ADAR and RNASEH2B and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis, consistent with a genetic basis underlying inflammation-driven malignant transformation in glioma and prostate carcinoma development.


Assuntos
Adenosina Desaminase/genética , Predisposição Genética para Doença , Interferon Tipo I/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Ligação a RNA/genética , Ribonuclease H/genética , Adenosina Desaminase/metabolismo , Adulto , Animais , Células Cultivadas , Estudos de Coortes , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Feminino , Fibroblastos/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Masculino , Camundongos Knockout , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Estabilidade Proteica , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...