Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7926, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575619

RESUMO

Nanofibers are investigated to be superiorly applicable in different purposes such as drug delivery systems, air filters, wound dressing, water filters, and tissue engineering. Herein, polyacrylonitrile (PAN) is thermally treated for autocatalytic cyclization, to give optically active PAN-nanopolymer, which is subsequently applicable for preparation of nanofibers through solution blow spinning. Whereas, solution blow spinning is identified as a process for production of nanofibers characterized with high porosity and large surface area from a minimum amounts of polymer solution. The as-prepared nanofibers were shown with excellent photoluminescence and microbicide performance. According to rheological properties, to obtain spinnable PAN-nanopolymer, PAN (12.5-15% wt/vol, honey like solution, 678-834 mPa s), thermal treatment for 2-4 h must be performed, whereas, time prolongation resulted in PAN-nanopolymer gelling or rubbering. Size distribution of PAN-nanopolymer (12.5% wt/vol) is estimated (68.8 ± 22.2 nm), to reflect its compatibility for the production of carbon nanofibers with size distribution of 300-400 nm. Spectral mapping data for the photoluminescent emission showed that, PAN-nanopolymer were exhibited with two intense peaks at 498 nm and 545 nm, to affirm their superiority for production of fluorescent nanofibers. The microbial reduction % was estimated for carbon nanofibers prepared from PAN-nanopolymer (12.5% wt/vol) to be 61.5%, 71.4% and 81.9%, against S. aureus, E. coli and C. albicans, respectively. So, the prepared florescent carbon nanofibers can be potentially applicable in anti-infective therapy.


Assuntos
Resinas Acrílicas , Anti-Infecciosos , Nanofibras , Escherichia coli , Staphylococcus aureus , Desenvolvimento Industrial , Candida albicans , Carbono
2.
Polymers (Basel) ; 15(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447465

RESUMO

Chitosan is produced by deacetylating the abundant natural chitin polymer. It has been employed in a variety of applications due to its unique solubility as well as its chemical and biological properties. In addition to being biodegradable and biocompatible, it also possesses a lot of reactive amino side groups that allow for chemical modification and the creation of a wide range of useful derivatives. The physical and chemical characteristics of chitosan, as well as how it is used in the food, environmental, and medical industries, have all been covered in a number of academic publications. Chitosan offers a wide range of possibilities in environmentally friendly textile processes because of its superior absorption and biological characteristics. Chitosan has the ability to give textile fibers and fabrics antibacterial, antiviral, anti-odor, and other biological functions. One of the most well-known and frequently used methods to create nanofibers is electrospinning. This technique is adaptable and effective for creating continuous nanofibers. In the field of biomaterials, new materials include nanofibers made of chitosan. Numerous medications, including antibiotics, chemotherapeutic agents, proteins, and analgesics for inflammatory pain, have been successfully loaded onto electro-spun nanofibers, according to recent investigations. Chitosan nanofibers have several exceptional qualities that make them ideal for use in important pharmaceutical applications, such as tissue engineering, drug delivery systems, wound dressing, and enzyme immobilization. The preparation of chitosan nanofibers, followed by a discussion of the biocompatibility and degradation of chitosan nanofibers, followed by a description of how to load the drug into the nanofibers, are the first issues highlighted by this review of chitosan nanofibers in drug delivery applications. The main uses of chitosan nanofibers in drug delivery systems will be discussed last.

3.
Polymers (Basel) ; 14(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36236159

RESUMO

The primary goal of this study is to prepare chitosan nanoparticles (CSNPs) by the ionic gelation method via the treatment of chitosan (0.2 wt.%) with tripolyphosphate (0.2 wt.%) ultrasonically for 45 min. FT-IR spectroscopy and TEM images were used to characterize and validate CSNP production. Cellulosic materials with different concentrations of CSNPs have better antibacterial and colouring characteristics. The treated cellulosic fabrics were analyzed by FT-IR spectroscopy, SEM, and thermogravimetric analysis. Colourimetric data measurements expressed in K/S values were used to evaluate the impact of CSNPs on the dyeing affinity of cellulosic materials. In addition, antibacterial activity against bacteria and fungi was tested on the treated cellulosic fabrics. According to the K/S values, cellulosic textiles treated with CSNPs (0.3 wt.%) had a better affinity for acid dyeing. These textiles also offer better antibacterial properties and are more resistant to washing, light, and rubbing. A cytotoxicity study found that CSNPs give cellulosic materials antibacterial and acid dyeing properties, which is good for the environment.

4.
Heliyon ; 8(8): e10199, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36033305

RESUMO

Facile and green sol-gel method was used to synthesize carbon-containing titania nanopowder, and diethanolamine (DEA) was used as the in situ carbon source. The titania gel was heat treated at temperatures ranging from 300 to 700 °C. X-ray diffraction (XRD), thermal analysis, and Raman spectroscopy reported no crystalline phase at <325 °C. Crystallization of the anatase phase with traces of brookite phases was observed at T > 325 °C, followed by a transformation to anatase/rutile in the range of 400 °C < T ≤ 650 °C. Finally, the complete phase transformation to the rutile phase occurs at temperatures of T > 650 °C. High-resolution electron microscopy (HREM) micrographs confirm the coexistence of anatase and rutile nanocrystals and amorphous carbon clusters in the composite samples. Chemical element analysis via X-ray photoelectron spectroscopy (XPS) indicated nonstoichiometry in the O/Ti ratio, the presence of (Ti3+) oxidation state, and elemental carbon. Thermogravimetric (TG) measurements are the most accurate method to measure the carbon content in samples. UV-vis spectroscopy demonstrated considerable enhancement in the optical absorption properties and electronic structure of prepared samples compared to the pure anatase and rutile. This enhancement is strongly correlated with the structure and composition of prepared samples and consequently depends on the preparation method as well as conditions. Innovative features such as self-cleaning action was demonstrated in carbon containing titanate nanocomposite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...