Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38667182

RESUMO

Single-cell RNA sequencing is a high-throughput novel method that provides transcriptional profiling of individual cells within biological samples. This method typically uses microfluidics systems to uncover the complex intercellular communication networks and biological pathways buried within highly heterogeneous cell populations in tissues. One important application of this technology sits in the fields of organ and stem cell transplantation, where complications such as graft rejection and other post-transplantation life-threatening issues may occur. In this review, we first focus on research in which single-cell RNA sequencing is used to study the transcriptional profile of transplanted tissues. This technology enables the analysis of the donor and recipient cells and identifies cell types and states associated with transplant complications and pathologies. We also review the use of single-cell RNA sequencing in stem cell implantation. This method enables studying the heterogeneity of normal and pathological stem cells and the heterogeneity in cell populations. With their remarkably rapid pace, the single-cell RNA sequencing methodologies will potentially result in breakthroughs in clinical transplantation in the coming years.


Assuntos
Transplante de Células , Transplante de Órgãos , Análise de Sequência de RNA , Animais , Humanos , Análise de Célula Única
2.
Micromachines (Basel) ; 13(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557476

RESUMO

Single-cell analysis is an emerging discipline that has shown a transformative impact in cell biology in the last decade. Progress in this field requires systems capable of accurately moving the cells and particles in a controlled manner. Here, we present a microfluidic platform equipped with C-shaped magnetic thin films to precisely transport magnetic particles in a tri-axial rotating magnetic field. This innovative system, compared to the other rivals, offers numerous advantages. The magnetic particles repel each other to prevent undesired cluster formation. Many particles move synced with the external rotating magnetic field, which results in highly parallel controlled particle transport. We show that the particle transport in this system is analogous to electron transport and Ohm's law in electrical circuits. The proposed magnetic transport pattern is carefully studied using both simulations and experiments for various parameters, including the magnetic field characteristics, particle size, and gap size in the design. We demonstrate the appropriate transport of both magnetic beads and magnetized living cells. We also show a pilot mRNA-capturing experiment with barcode-carrying magnetic beads. The introduced chip offers fundamental potential applications in the fields of single-cell biology and bioengineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...