Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(9): 4588-4604, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976833

RESUMO

Globally, reef manta rays (Mobula alfredi) are in decline and are particularly vulnerable to exploitation and disturbance at aggregation sites. Here, passive acoustic telemetry and a suite of advanced oceanographic technologies were used for the first time to investigate the fine-scale (5-min) influence of oceanographic drivers on the visitation patterns of 19 tagged M. alfredi to a feeding aggregation site at Egmont Atoll in the Chagos Archipelago. Boosted regression trees indicate that tag detection probability increased with the intrusion of cold-water bores propagating up the atoll slope through the narrow lagoon inlet during flood tide, potentially transporting zooplankton from the thermocline. Tag detection probability also increased with warmer near-surface temperature close to low tide, with near-surface currents flowing offshore, and with high levels of backscatter (a proxy of zooplankton biomass). These combinations of processes support the proposition that zooplankton carried from the thermocline into the lagoon during the flood may be pumped back out through the narrow inlet during an ebb tide. These conditions provide temporally limited feeding opportunities for M. alfredi, which are tied on the tides. Results also provide some evidence of the presence of Langmuir Circulation, which transports and concentrates zooplankton, and may partly explain why M. alfredi occasionally remained at the feeding location for longer than that two hours. Identification of these correlations provides unique insight into the dynamic synthesis of fine-scale oceanographic processes which are likely to influence the foraging ecology of M. alfredi at Egmont Atoll, and elsewhere throughout their range.

2.
J Acoust Soc Am ; 148(2): 1014, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32873039

RESUMO

There is high spatial overlap between grey seals and shipping traffic, and the functional hearing range of grey seals indicates sensitivity to underwater noise emitted by ships. However, there is still very little data regarding the exposure of grey seals to shipping noise, constraining effective policy decisions. Particularly, there are few predictions that consider the at-sea movement of seals. Consequently, this study aimed to predict the exposure of adult grey seals and pups to shipping noise along a three-dimensional movement track, and assess the influence of shipping characteristics on sound exposure levels. Using ship location data, a ship source model, and the acoustic propagation model, RAMSurf, this study estimated weighted 24-h sound exposure levels (10-1000 Hz) (SELw). Median predicted 24-h SELw was 128 and 142 dB re 1 µPa2s for the pups and adults, respectively. The predicted exposure of seals to shipping noise did not exceed best evidence thresholds for temporary threshold shift. Exposure was mediated by the number of ships, ship source level, the distance between seals and ships, and the at-sea behaviour of the seals. The results can inform regulatory planning related to anthropogenic pressures on seal populations.


Assuntos
Mergulho , Focas Verdadeiras , Acústica , Animais , Ruído/efeitos adversos , Navios
3.
PeerJ ; 8: e8335, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161687

RESUMO

BACKGROUND: Citizen science is increasingly popular and has the potential to collect extensive datasets at lower costs than traditional surveys conducted by professional scientists. Ferries have been used to collect data on cetacean populations for decades, providing long-term time series for monitoring of cetacean populations. One cetacean species of concern is the common dolphin, which has been found stranded around the north-east Atlantic in recent years, with high numbers on French coasts being attributed to fisheries bycatch. We estimate common dolphin densities in the north-east Atlantic and investigate the ability of citizen science data to identify changes in marine mammal densities and areas of importance. MATERIALS AND METHODS: Data were collected by citizen scientists on ferries between April and October in 2006-2017. Common dolphin sightings data from two ferry routes across three regions, Bay of Biscay (n = 569); south-west United Kingdom to the Isles of Scilly in the Celtic Sea (n = 260); and English Channel (n = 75), were used to estimate density across ferry routes. Two-stage Density Surface Models accounted for imperfect detection, and tested the influence of environmental (chlorophyll a, sea surface temperature, depth, and slope), spatial (latitude and longitude) and temporal terms (year and Julian day) on occurrence. RESULTS: Overall detection probability was highest in the areas sampled within the English Channel (0.384) and Bay of Biscay (0.348), and lowest on the Scilly's route (0.158). Common dolphins were estimated to occur in higher densities on the Scilly's route (0.400 per km2) and the Bay of Biscay (0.319 per km2), with low densities in the English Channel (0.025 per km2). Densities on the Scilly's route appear to have been relatively stable since 2006 with a slight decrease in 2017. Densities peaked in the Bay of Biscay in 2013 with lower numbers since. Densities in the English Channel appear to have increased over time since 2009. DISCUSSION: This study highlights the effectiveness of citizen science data to investigate the distribution and density of cetaceans. The densities and temporal changes shown by this study are representative of those from wider-ranging robust estimates. We highlight the ability of citizen science to collect data over extensive periods of time which complements dedicated, designed surveys. Such long-term data are important to identify changes within a population; however, citizen science data may, in some situations, present challenges. We provide recommendations to ensure high-quality data which can be used to inform management and conservation of cetacean populations.

4.
Trends Ecol Evol ; 33(10): 790-802, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30166069

RESUMO

Predictive models are central to many scientific disciplines and vital for informing management in a rapidly changing world. However, limited understanding of the accuracy and precision of models transferred to novel conditions (their 'transferability') undermines confidence in their predictions. Here, 50 experts identified priority knowledge gaps which, if filled, will most improve model transfers. These are summarized into six technical and six fundamental challenges, which underlie the combined need to intensify research on the determinants of ecological predictability, including species traits and data quality, and develop best practices for transferring models. Of high importance is the identification of a widely applicable set of transferability metrics, with appropriate tools to quantify the sources and impacts of prediction uncertainty under novel conditions.


Assuntos
Ecologia/métodos , Modelos Biológicos
5.
Mar Pollut Bull ; 131(Pt A): 589-601, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29886986

RESUMO

Underwater noise pollution from shipping is a significant ecological concern. Acoustic propagation models are essential to predict noise levels and inform management activities to safeguard ecosystems. However, these models can be computationally expensive to execute. To increase computational efficiency, ships are spatially partitioned using grids but the cell size is often arbitrary. This work presents an adaptive grid where cell size varies with distance from the receiver to increase computational efficiency and accuracy. For a case study in the Celtic Sea, the adaptive grid represented a 2 to 5 fold increase in computational efficiency in August and December respectively, compared to a high resolution 1 km grid. A 5 km grid increased computational efficiency 5 fold again. However, over the first 25 km, the 5 km grid produced errors up to 13.8 dB compared to the 1 km grid, whereas, the adaptive grid generated errors of less than 0.5 dB.


Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Ruído , Navios , Acústica , Ecossistema , Oceanos e Mares
6.
Sci Rep ; 7(1): 15505, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138511

RESUMO

Young animals must learn to forage effectively to survive the transition from parental provisioning to independent feeding. Rapid development of successful foraging strategies is particularly important for capital breeders that do not receive parental guidance after weaning. The intrinsic and extrinsic drivers of variation in ontogeny of foraging are poorly understood for many species. Grey seals (Halichoerus grypus) are typical capital breeders; pups are abandoned on the natal site after a brief suckling phase, and must develop foraging skills without external input. We collected location and dive data from recently-weaned grey seal pups from two regions of the United Kingdom (the North Sea and the Celtic and Irish Seas) using animal-borne telemetry devices during their first months of independence at sea. Dive duration, depth, bottom time, and benthic diving increased over the first 40 days. The shape and magnitude of changes differed between regions. Females consistently had longer bottom times, and in the Celtic and Irish Seas they used shallower water than males. Regional sex differences suggest that extrinsic factors, such as water depth, contribute to behavioural sexual segregation. We recommend that conservation strategies consider movements of young naïve animals in addition to those of adults to account for developmental behavioural changes.


Assuntos
Mergulho/fisiologia , Comportamento Alimentar/fisiologia , Comportamento Predatório/fisiologia , Focas Verdadeiras/fisiologia , Animais , Animais Recém-Nascidos , Conservação dos Recursos Naturais , Feminino , Masculino , Mar do Norte , Fatores Sexuais , Telemetria/instrumentação , Telemetria/métodos , Reino Unido , Desmame
7.
Mov Ecol ; 4: 25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27800161

RESUMO

In the last thirty years, the emergence and progression of biologging technology has led to great advances in marine predator ecology. Large databases of location and dive observations from biologging devices have been compiled for an increasing number of diving predator species (such as pinnipeds, sea turtles, seabirds and cetaceans), enabling complex questions about animal activity budgets and habitat use to be addressed. Central to answering these questions is our ability to correctly identify and quantify the frequency of essential behaviours, such as foraging. Despite technological advances that have increased the quality and resolution of location and dive data, accurately interpreting behaviour from such data remains a challenge, and analytical methods are only beginning to unlock the full potential of existing datasets. This review evaluates both traditional and emerging methods and presents a starting platform of options for future studies of marine predator foraging ecology, particularly from location and two-dimensional (time-depth) dive data. We outline the different devices and data types available, discuss the limitations and advantages of commonly-used analytical techniques, and highlight key areas for future research. We focus our review on pinnipeds - one of the most studied taxa of marine predators - but offer insights that will be applicable to other air-breathing marine predator tracking studies. We highlight that traditionally-used methods for inferring foraging from location and dive data, such as first-passage time and dive shape analysis, have important caveats and limitations depending on the nature of the data and the research question. We suggest that more holistic statistical techniques, such as state-space models, which can synthesise multiple track, dive and environmental metrics whilst simultaneously accounting for measurement error, offer more robust alternatives. Finally, we identify a need for more research to elucidate the role of physical oceanography, device effects, study animal selection, and developmental stages in predator behaviour and data interpretation.

8.
J R Soc Interface ; 11(100): 20140679, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25165595

RESUMO

The oceanographic drivers of marine vertebrate habitat use are poorly understood yet fundamental to our knowledge of marine ecosystem functioning. Here, we use composite front mapping and high-resolution GPS tracking to determine the significance of mesoscale oceanographic fronts as physical drivers of foraging habitat selection in northern gannets Morus bassanus. We tracked 66 breeding gannets from a Celtic Sea colony over 2 years and used residence time to identify area-restricted search (ARS) behaviour. Composite front maps identified thermal and chlorophyll-a mesoscale fronts at two different temporal scales-(i) contemporaneous fronts and (ii) seasonally persistent frontal zones. Using generalized additive models (GAMs), with generalized estimating equations (GEE-GAMs) to account for serial autocorrelation in tracking data, we found that gannets do not adjust their behaviour in response to contemporaneous fronts. However, ARS was more likely to occur within spatially predictable, seasonally persistent frontal zones (GAMs). Our results provide proof of concept that composite front mapping is a useful tool for studying the influence of oceanographic features on animal movements. Moreover, we highlight that frontal persistence is a crucial element of the formation of pelagic foraging hotspots for mobile marine vertebrates.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Ecossistema , Modelos Biológicos , Oceanos e Mares , Animais
9.
Nat Commun ; 4: 1677, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23575681

RESUMO

The climatic changes of the glacial cycles are thought to have been a major driver of population declines and species extinctions. However, studies to date have focused on terrestrial fauna and there is little understanding of how marine species responded to past climate change. Here we show that a true Arctic species, the bowhead whale (Balaena mysticetus), shifted its range and tracked its core suitable habitat northwards during the rapid climate change of the Pleistocene-Holocene transition. Late Pleistocene lineages survived into the Holocene and effective female population size increased rapidly, concurrent with a threefold increase in core suitable habitat. This study highlights that responses to climate change are likely to be species specific and difficult to predict. We estimate that the core suitable habitat of bowhead whales will be almost halved by the end of this century, potentially influencing future population dynamics.


Assuntos
Baleia Franca/genética , Mudança Climática , DNA/genética , Ecossistema , Animais , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA