Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(20): 8909-8918, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728532

RESUMO

Over 4 million liters of mixed acidic (∼pH 2.5), high ionic strength (∼5 M nitrate) plutonium (Pu) processing waste were released into the 216-Z-9 (Z-9) trench at the Hanford Site, USA, and trace Pu has migrated 37 m below the trench. In this study, we used flowthrough columns to investigate Pu transport in simplified processing waste through uncontaminated Hanford sediments to determine the conditions that led to Pu migration. In low pH aqueous fluids, some Pu breakthrough is observed at pH < 4, and increased Pu transport (14% total Pu breakthrough) is observed at pH < 2. However, Pu migrates in organic processing solvents through low pH sediments virtually uninhibited with approximately 94 and 86% total Pu breakthrough observed at pH 1 and pH 3, respectively. This study demonstrates that Pu migration can occur both with and without organic solvents at pH < 4, but significantly more Pu can be transported when partitioned into organic processing solvents. Our data suggest that under acidic conditions (pH < 4) in the vadose zone beneath the Z-9 trench, Pu present in organic processing solvents moved relatively unhindered and may explain the historical downward migration of Pu tens of meters below the Z-9 trench.


Assuntos
Plutônio , Concentração de Íons de Hidrogênio , Poluentes Radioativos da Água , Sedimentos Geológicos/química , Resíduos Radioativos , Solventes/química
2.
J Hazard Mater ; 459: 132165, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37531768

RESUMO

Mechanism of hexavalent chromium removal (Cr(VI) as CrO42-) by the weak-base ion exchange (IX) resin ResinTech® SIR-700-HP (SIR-700) from simulated groundwater is assessed in the presence of radioactive contaminants iodine-129 (as IO3-), uranium (U as uranyl UO22+), and technetium-99 (as TcO4-), and common environmental anions sulfate (SO42-) and chloride (Cl-). Batch tests using the acid sulfate form of SIR-700 demonstrated Cr(VI) and U(VI) removal exceeded 97%, except in the presence of high SO42- concentrations (536 mg/L) where Cr(VI) and U(VI) removal decreased to ≥ 80%. However, Cr(VI) removal notably improved with co-mingled U(VI) that complexes with SO42- at the protonated amine sites. These U-SO42- complexes are integral to U(VI) removal, as confirmed by the decrease in U(VI) removal (<40%) when the acid chloride form of SIR-700 was used instead. Solid phase characterization revealed that CrO42- is removed by IX with SO42- complexes and/or reduced to amorphous Cr(III)(OH)3 at secondary alcohol sites. Tc(VII)O4- and I(V)O3- also undergo chemical reduction, following a similar removal mechanism. Oxyanion removal preference is determined by the anion reduction potential (CrO42->TcO4->IO3-), geometry, and charge density. For these reasons, 39% and 69% of TcO4- and 17% and 39% of IO3- are removed in the presence and absence of Cr(VI), respectively.

3.
J Hazard Mater ; 445: 130546, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055961

RESUMO

Radioactive technetium-99 (Tc) present in waste streams and subsurface plumes at legacy nuclear reprocessing sites worldwide poses potential risks to human health and environment. This research comparatively evaluated efficiency of zero-valent iron (ZVI) toward reductive removal of Tc(VII) in presence of Cr(VI) from NaCl and Na2SO4 electrolyte solutions under ambient atmospheric conditions. In both electrolytes, anticorrosive Cr(VI) suppressed oxidation of ZVI at elevated concentrations resulting in the delay of initiation of Tc(VII) reduction to Tc(IV). In the absence of Cr(VI), no delay was observed in the analogous systems. At low ionic strength (IS), retarded ZVI oxidation inhibited Tc(VII) reduction. Higher IS favored reduction of both Tc(VII) and Cr(VI), which followed second-order reaction rates in both electrolytes attributed to the more efficient iron oxidation as evident from solids characterization studies. Magnetite was the primary iron oxide phase, and its higher fraction in the SO42- solutions facilitated reductive removal of Tc(VII) and Cr(VI). In the Cl- matrix, Cr(VI) promoted further oxidation of magnetite as well as formation of chromite diminishing overall reductive capacity of this system and resulting in less effective removal of Tc(VII) compared to the SO42- solutions.

4.
J Hazard Mater ; 424(Pt B): 127400, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34638077

RESUMO

Elemental iron Fe0 is a promising reductant for removal of radioactive technetium-99 (Tc) from complex aqueous waste streams that contain sulfate, halides, and other inorganic anions generated during processing of legacy radioactive waste. The impact of sulfate on the kinetics of oxidation and reduction capacity of Fe0 in the presence of Tc has not been examined. We investigated the oxidative transformation of Fe0 and reductive removal of TcO4- in 0.1 M Na2SO4 as a function of initial pH (i.e., pHi 4, 7, and 10) under aerobic conditions up to 30 days. Tc reduction was the fastest at pHi 7 and slowest at pHi 10 (Tc reduction rate pHi 7 > 4 > 10). Aqueous fraction of Tc was measured at 0.4% at pHi 7 within 6 h, whereas ≥ 97% of Tc was removed from solutions at pHi of 4 and 10 within 24 h. Solid phase characterization showed that magnetite was the only oxidized crystalline phase for the first 6 h regardless of initial pH. Lepidocrocite was the most abundant oxidized product for pHi 10 after 5 days, but was not observed at pH of 4 or 7.


Assuntos
Ferro , Pertecnetato Tc 99m de Sódio , Concentração de Íons de Hidrogênio , Oxirredução , Sulfatos
5.
J Hazard Mater ; 424(Pt C): 127657, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785437

RESUMO

In situ remediation applications of ammonia (NH3) gas have potential for sequestration of subsurface contamination. Ammonia gas injections initially increase the pore water pH leading to mineral dissolution followed by formation of secondary precipitates as the pH is neutralized. However, there is a lack of understanding of fundamental alteration processes due to NH3 treatment. In these batch studies, phyllosilicate minerals (illite and montmorillonite) were exposed to NH3 gas with subsequent aeration to simulate in situ remediation. Following treatments, solids were characterized using a variety of techniques, including X-ray diffraction, N2 adsorption-desorption analysis for surface area, Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), and microscopy methods to investigate physicochemical transformations. Results indicate that, at high pH, the clays are altered as observed by differences in morphology and particle size via microscopy. However, the two clays interact differently with NH3. While montmorillonite interlayers collapsed due to intercalation, illite layers were unaffected as confirmed by FTIR analysis. Further, structural changes in silicate ([SiO4]n-) and aluminol (Al-OH) groups were identified by NMR and FTIR. This research showed that mineral alteration processes occur during and after NH3 gas treatment which may be used to remove radionuclides from the aqueous phase through sorption, co-precipitation, and coating with secondary phyllosilicate alteration products.

6.
J Environ Radioact ; 216: 106182, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32063556

RESUMO

The use of an aqueous reductant (Na-dithionite) with pH buffer (K-carbonate, pH 12) was evaluated in this laboratory study as a potential remedial approach for removing Fe oxide associated iodine and enhancing pump-and-treat extraction from iodine-contaminated sediments in the unconfined aquifer in the 200 West Area of the Hanford Site. X-ray fluorescence data of untreated sediment indicated that iodine was largely associated with Fe (i.e., potentially incorporated into Fe oxides), but XANES data was inconclusive as to valence state. During groundwater leaching, aqueous and adsorbed iodine was quickly released, then additional iodine was slowly released potentially from slow dissolution of one or more surface phases. The Na-dithionite treatment removed greater iodine mass (2.9x) at a faster rate (1-4 orders of magnitude) compared to leaching with groundwater alone. Iron extractions for untreated and treated sediments showed a decrease in Fe(III)-oxides, which likely released iodine to aqueous solution. Solid phase inorganic carbon and aqueous Ca and Mg analysis further confirmed that significant calcite dissolution did not occur in these experiments meaning these phases did not release significant iodine. Although it was expected that, after treatment, 127I concentrations would eventually be lower than untreated sediments, continued, elevated iodine concentrations for treated samples over 750 h were observed for leaching experiments. Stop flow events during 1-D column leaching suggested that some iodide precipitated within the first few pore volumes. Further, batch extraction experiments compared iodine-129/127 removal and showed that iodine-129 was more readily removed than iodine-127 suggesting that the two are present in different phases due to their different origins. Although significantly greater iodine is removed with treatment, the long-term leaching needs to be investigated further as it may limit dithionite treatment at the field scale.


Assuntos
Radioisótopos do Iodo/isolamento & purificação , Compostos Férricos , Sedimentos Geológicos , Água Subterrânea , Monitoramento de Radiação , Solubilidade , Poluentes Radioativos da Água
7.
Commun Chem ; 3(1): 87, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36703425

RESUMO

The sequestration of metal ions into the crystal structure of minerals is common in nature. To date, the incorporation of technetium(IV) into iron minerals has been studied predominantly for systems under carefully controlled anaerobic conditions. Mechanisms of the transformation of iron phases leading to incorporation of technetium(IV) under aerobic conditions remain poorly understood. Here we investigate granular metallic iron for reductive sequestration of technetium(VII) at elevated concentrations under ambient conditions. We report the retarded transformation of ferrihydrite to magnetite in the presence of technetium. We observe that quantitative reduction of pertechnetate with a fraction of technetium(IV) structurally incorporated into non-stoichiometric magnetite benefits from concomitant zero valent iron oxidative transformation. An in-depth profile of iron oxide reveals clusters of the incorporated technetium(IV), which account for 32% of the total retained technetium estimated via X-ray absorption and X-ray photoelectron spectroscopies. This corresponds to 1.86 wt.% technetium in magnetite, providing the experimental evidence to theoretical postulations on thermodynamically stable technetium(IV) being incorporated into magnetite under spontaneous aerobic redox conditions.

8.
J Hazard Mater ; 380: 120836, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31284170

RESUMO

Technetium-99 (Tc) is a long-lived radioactive contaminant present in legacy nuclear waste streams and contaminated plumes of the nuclear waste storage sites worldwide that poses risks for human health and the environment. Pertechnetate (TcO4-), the most common chemical form of Tc under oxidative conditions, is of particular concern due to its high aqueous solubility and mobility in the subsurface. One approach to treatment and remediation of TcO4- is reduction of Tc7+ to less soluble and mobile Tc4+ and its removal from the contaminated streams such as liquid secondary waste generated during vitrification of the Hanford low activity tank waste. Zero valent iron (ZVI) is a common reactive agent for reductive treatment of environmental contaminants, including reducible heavy metal ions, which can offer a potential solution to this challenge. Here, we present a comparative study of eleven commercial ZVI materials manufactured by different methods that were evaluated for the reductive removal of TcO4- from an aqueous 80 mM NaCl solution at near neutral pH representing low activity waste off-gas condensate. Performance of ZVI materials was analyzed in relation to time-dependent Fe2+ dissolution as well as pH and ORP profiles of the contact solution. Large variability in the efficiency and kinetics of Tc7+ reduction by different ZVI materials was contingent on their origin. ZVI materials manufactured by electrolytic method exhibited superior performance, and the kinetics of the Tc7+ reduction correlated to particle size. ZVI materials manufactured by iron pentacarbonyl reduction with hydrogen were ineffective for Tc7+ reduction. In general, our results highlight the need for thorough performance analysis of commercial ZVI materials for any contaminant of interest.

9.
J Environ Manage ; 223: 108-114, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29908396

RESUMO

Temporary base treatment is a potential remediation technique for heavy metals through adsorption, precipitation, and co-precipitation with minerals. Manipulation of pH with ammonia gas injection may be especially useful for vadose zone environments as it does not require addition of liquids that would increase the flux towards groundwater. In this research, we conducted laboratory batch experiments to evaluate the changes in uranium mobility and mineral dissolution with base treatments including sodium hydroxide, ammonium hydroxide, and ammonia gas. Our data show that partitioning of uranium to the solid phase increases by several orders of magnitude following base treatment in the presence of different minerals and natural sediments from the Hanford site. The presence of dissolved calcium and carbonate play an important role in precipitation and co-precipitation of uranium at elevated pH. In addition, significant incongruent dissolution of bulk mineral phases occurs and likely leads to precipitation of secondary mineral phases. These secondary phases may remove uranium via adsorption, precipitation, and co-precipitation processes and may coat uranium phases with low solubility minerals as the pH returns to natural conditions.


Assuntos
Urânio/isolamento & purificação , Poluentes Radioativos da Água/isolamento & purificação , Adsorção , Animais , Sedimentos Geológicos , Água Subterrânea , Minerais , Suínos , Urânio/química , Poluentes Radioativos da Água/química
10.
J Environ Radioact ; 167: 150-159, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28007440

RESUMO

Ammonia gas injection is a promising technique for the remediation of uranium within the vadose zone. It can be used to manipulate the pH of a system and cause co-precipitation processes that are expected to remove uranium from the aqueous phase and decrease leaching from the solid phase. The work presented in this paper explores the effects of ammonium and sodium hydroxide on the partitioning of uranium and dissolution of the kaolinite mineral in simplified synthetic groundwaters using equilibrium batch sorption and sequential extraction experiments. It shows that there is a significant increase in uranium removal in systems with divalent cations present in the aqueous phase but not in sodium chloride synthetic groundwaters. Further, the initial conditions of the aqueous phase do not affect the dissolution of kaolinite. However, the type of base treatment does have an effect on mineral dissolution.


Assuntos
Compostos de Amônio/química , Caulim/química , Modelos Químicos , Urânio/química , Poluentes Radioativos da Água/química , Água Subterrânea , Concentração de Íons de Hidrogênio , Minerais , Solubilidade , Urânio/análise
11.
J Environ Radioact ; 165: 168-181, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27723529

RESUMO

Previous field experiments have suggested colloid-facilitated transport via inorganic and organic colloids as the primary mechanism of enhanced actinide transport in the subsurface at former nuclear weapons facilities. In this work, research was guided by the hypothesis that humic substances can enhance tetravalent actinide (An(IV)) migration by coating and mobilizing natural colloids in environmental systems and increasing An(IV) sorption to colloids. This mechanism is expected to occur under relatively acidic conditions where organic matter can sorb and coat colloid surfaces and facilitate formation of ternary colloid-ligand-actinide complexes. The objective of this work was to examine Th transport through packed columns in the presence of hematite colloids and/or Suwannee River fulvic acid (SRFA). In the presence of SRFA, with or without hematite colloids, significant transport (>60% recovery within the effluent) of thorium occurred through quartz columns. It is notable that the SRFA contributed to increased transport of both Th and hematite colloids, while insignificant transport occurred in the absence of fulvic acid. Further, in the presence of a natural sandy sediment (as opposed to pure quartz), transport is negligible in the presence of SRFA due to interactions with natural, clay-sized sediment coatings. Moreover, this data shows that the transport of Th through quartz columns is enhanced in ternary Th-colloid-SRFA and binary Th-SRFA systems as compared to a system containing only Th.


Assuntos
Benzopiranos/química , Compostos Férricos/química , Modelos Químicos , Tório/análise , Poluentes Químicos da Água/química , Adsorção , Coloides/química , Rios/química , Tório/química
12.
Int J Environ Health Res ; 22(6): 543-59, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22612550

RESUMO

An investigation studying the effects of storage duration and location on the persistence of heterotrophic microorganisms in oligotrophic bottled water environments has been completed. One-gallon high-density polyethylene water containers stored for up to 16 weeks at temperatures ranging from 2°C to >49°C in a refrigerator, indoor cabinet, covered porch, and car trunk were evaluated for microbiological quality. Heterotrophic plate counts (HPCs) of up to 4 × 10(3) cfu/mL were detected in containers stored on a porch and car trunk; whereas, HPCs were found not to exceed 400 cfu/mL and 100 cfu/mL for bottles stored in indoor cabinets and refrigerators, respectively. Containers stored on an enclosed porch for up to seven years contained HPC of up to 4 × 10(4) cfu/mL. Logistic and Gompertz growth models predicted microbial growth rates for bottled water stored on a protected porch environment for long (R(2) 0.99) and short-term (R(2) 0.86) durations.


Assuntos
Bactérias/isolamento & purificação , Água Potável/microbiologia , Armazenamento de Alimentos , Microbiologia da Água , Poluentes da Água/isolamento & purificação , Contagem de Colônia Microbiana , Embalagem de Alimentos , Polietileno , Polietilenoglicóis , Polietilenotereftalatos , Fatores de Tempo , Leveduras/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...