Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 158(2): 182-196, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894004

RESUMO

Calcium-dependent activator protein for secretion 1 (CAPS1) is a SNARE accessory protein that facilitates formation of the SNARE complex to enable neurotransmitter release. Messenger RNAs encoding CAPS1 are subject to a site-specific adenosine-to-inosine (A-to-I) editing event resulting in a glutamate-to-glycine (E-to-G) substitution in the C-terminal domain of the encoded protein product. The C-terminal domain of CAPS1 is necessary for its synaptic enrichment and Cadps RNA editing has been shown previously to enhance the release of neuromodulatory transmitters. Using mutant mouse lines engineered to solely express CAPS1 protein isoforms encoded by either the non-edited or edited Cadps transcript, primary neuronal cultures from mouse hippocampus were used to explore the effect of Cadps editing on neurotransmission and CAPS1 synaptic localization at both glutamatergic and GABAergic synapses. While the editing of Cadps does not alter baseline evoked neurotransmission, it enhances short-term synaptic plasticity, specifically short-term depression, at inhibitory synapses. Cadps editing also alters spontaneous inhibitory neurotransmission. Neurons that solely express edited Cadps have a greater proportion of synapses that contain CAPS1 than neurons that solely express non-edited Cadps for both glutamatergic and GABAergic synapses. Editing of Cadps transcripts is regulated by neuronal activity, as global network stimulation increases the extent of transcripts edited in wild-type hippocampal neurons, whereas chronic network silencing decreases the level of Cadps editing. Taken together, these results provide key insights into the importance of Cadps editing in modulating its own synaptic localization, as well as the modulation of neurotransmission at inhibitory synapses in hippocampal neurons.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Edição de RNA/genética , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Adenosina Desaminase/metabolismo , Animais , Sistemas CRISPR-Cas , Fenômenos Eletrofisiológicos , Ácido Glutâmico/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Mutação , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Cultura Primária de Células , Edição de RNA/fisiologia , Ácido gama-Aminobutírico/fisiologia
2.
Nucleic Acids Res ; 49(7): 4020-4036, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33721028

RESUMO

The hydrolytic deamination of adenosine-to-inosine (A-to-I) by RNA editing is a widespread post-transcriptional modification catalyzed by the adenosine deaminase acting on RNA (ADAR) family of proteins. ADAR-mediated RNA editing modulates cellular pathways involved in innate immunity, RNA splicing, RNA interference, and protein recoding, and has been investigated as a strategy for therapeutic intervention of genetic disorders. Despite advances in basic and translational research, the mechanisms regulating RNA editing are poorly understood. Though several trans-acting regulators of editing have been shown to modulate ADAR protein expression, previous studies have not identified factors that modulate ADAR catalytic activity. Here, we show that RNA editing increases upon intracellular acidification, and that these effects are predominantly explained by both enhanced ADAR base-flipping and deamination rate at acidic pH. We also show that the extent of RNA editing increases with the reduction in pH associated with conditions of cellular hypoxia.


Assuntos
Adenosina Desaminase/metabolismo , Edição de RNA , RNA/metabolismo , Animais , Hipóxia Celular , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Ratos
3.
Methods Mol Biol ; 2181: 97-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32729077

RESUMO

The conversion of adenosine to inosine (A to I) by RNA editing represents a common posttranscriptional mechanism for diversification of both the transcriptome and proteome, and is a part of the cellular response for innate immune tolerance. Due to its preferential base-pairing with cytosine (C), inosine (I) is recognized as guanosine (G) by reverse transcriptase, as well as the cellular splicing and translation machinery. A-to-I editing events appear as A-G discrepancies between genomic DNA and cDNA sequences. Molecular analyses of RNA editing have leveraged these nucleoside differences to quantify RNA editing in ensemble populations of RNA transcripts and within individual cDNAs using high-throughput sequencing or Sanger sequencing-derived analysis of electropherogram peak heights. Here, we briefly review and compare these methods of RNA editing quantification, as well as provide experimental protocols by which such analyses may be achieved.


Assuntos
Adenosina/análise , DNA Complementar/análise , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Inosina/análise , Edição de RNA/genética , Transcriptoma , Adenosina/genética , DNA Complementar/genética , Genoma Humano , Humanos , Inosina/genética
4.
Sci Rep ; 10(1): 15437, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963273

RESUMO

Photoperiod or the duration of daylight has been implicated as a risk factor in the development of mood disorders. The dopamine and serotonin systems are impacted by photoperiod and are consistently associated with affective disorders. Hence, we evaluated, at multiple stages of postnatal development, the expression of key dopaminergic (TH) and serotonergic (Tph2, SERT, and Pet-1) genes, and midbrain monoamine content in mice raised under control Equinox (LD 12:12), Short winter-like (LD 8:16), or Long summer-like (LD 16:8) photoperiods. Focusing in early adulthood, we evaluated the midbrain levels of these serotonergic genes, and also assayed these gene levels in the dorsal raphe nucleus (DRN) with RNAScope. Mice that developed under Short photoperiods demonstrated elevated midbrain TH expression levels, specifically during perinatal development compared to mice raised under Long photoperiods, and significantly decreased serotonin and dopamine content throughout the course of development. In adulthood, Long photoperiod mice demonstrated decreased midbrain Tph2 and SERT expression levels and reduced Tph2 levels in the DRN compared Short photoperiod mice. Thus, evaluating gene × environment interactions in the dopaminergic and serotonergic systems during multiple stages of development may lead to novel insights into the underlying mechanisms in the development of affective disorders.


Assuntos
Monoaminas Biogênicas/metabolismo , Dopamina/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fotoperíodo , Serotonina/metabolismo , Animais , Núcleo Dorsal da Rafe/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
5.
PLoS One ; 12(6): e0180547, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28666011

RESUMO

Key metabolic hormones, such as insulin, leptin, and adiponectin, have been studied extensively in obesity, however the pathophysiologic relevance of the calcitonin family of peptides remains unclear. This family includes calcitonin (CT), its precursor procalcitonin (PCT), and alpha calcitonin-gene related peptide (αCGRP), which are all encoded by the gene Calca. Here, we studied the role of Calca-derived peptides in diet-induced obesity (DIO) by challenging Calcr-/- (encoding the calcitonin receptor, CTR), Calca-/-, and αCGRP-/- mice and their respective littermates with high-fat diet (HFD) feeding for 16 weeks. HFD-induced pathologies were assessed by glucose tolerance, plasma cytokine and lipid markers, expression studies and histology. We found that DIO in mice lacking the CTR resulted in impaired glucose tolerance, features of enhanced nonalcoholic steatohepatitis (NASH) and adipose tissue inflammation compared to wildtype littermates. Furthermore, CTR-deficient mice were characterized by dyslipidemia and elevated HDL levels. In contrast, mice lacking Calca were protected from DIO, NASH and adipose tissue inflammation, and displayed improved glucose tolerance. Mice exclusively lacking αCGRP displayed a significantly less improved DIO phenotype compared to Calca-deficient mice. In summary, we demonstrate that the CT/CTR axis is involved in regulating plasma cholesterol levels while Calca, presumably through PCT, seems to have a detrimental effect in the context of metabolic disease. Our study provides the first comparative analyses of the roles of Calca-derived peptides and the CTR in metabolic disease.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/química , Dieta Hiperlipídica , Obesidade/metabolismo , Peptídeos/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia
6.
Hum Genet ; 136(9): 1079-1091, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28664341

RESUMO

The central nervous system-specific serotonin receptor 2C (5HT2C) controls key physiological functions, such as food intake, anxiety, and motoneuron activity. Its deregulation is involved in depression, suicidal behavior, and spasticity, making it the target for antipsychotic drugs, appetite controlling substances, and possibly anti-spasm agents. Through alternative pre-mRNA splicing and RNA editing, the 5HT2C gene generates at least 33 mRNA isoforms encoding 25 proteins. The 5HT2C is a G-protein coupled receptor that signals through phospholipase C, influencing the expression of immediate/early genes like c-fos. Most 5HT2C isoforms show constitutive activity, i.e., signal without ligand binding. The constitutive activity of 5HT2C is decreased by pre-mRNA editing as well as alternative pre-mRNA splicing, which generates a truncated isoform that switches off 5HT2C receptor activity through heterodimerization; showing that RNA processing regulates the constitutive activity of the 5HT2C system. RNA processing events influencing the constitutive activity target exon Vb that forms a stable double stranded RNA structure with its downstream intron. This structure can be targeted by small molecules and oligonucleotides that change exon Vb alternative splicing and influence 5HT2C signaling in mouse models, leading to a reduction in food intake. Thus, the 5HT2C system is a candidate for RNA therapy in multiple models of CNS disorders.


Assuntos
Processamento Alternativo , Éxons , Multimerização Proteica , Precursores de RNA , Receptores de Serotonina , Animais , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/terapia , Humanos , Camundongos , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Receptores de Serotonina/biossíntese , Receptores de Serotonina/genética
7.
Mol Brain ; 10(1): 11, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28385157

RESUMO

A-to-I RNA editing is an important process for generating molecular diversity in the brain through modification of transcripts encoding several proteins important for neuronal signaling. We investigated the relationships between the extent of editing at multiple substrate transcripts (5HT2C, MGLUR4, CADPS, GLUR2, GLUR4, and GABRA3) in brain tissue obtained from adult humans and rhesus macaques. Several patterns emerged from these studies revealing conservation of editing across primate species. Additionally, variability in the human population allows us to make novel inferences about the co-regulation of editing at different editing sites and even across different brain regions.


Assuntos
Encéfalo/metabolismo , Edição de RNA/genética , Adenosina Desaminase/metabolismo , Animais , Córtex Cerebral/metabolismo , Humanos , Macaca mulatta , Neostriado/metabolismo , Proteínas de Ligação a RNA/metabolismo
8.
Sci Rep ; 7: 41095, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28216637

RESUMO

Adenosine-to-inosine RNA editing in transcripts encoding the voltage-gated potassium channel Kv1.1 converts an isoleucine to valine codon for amino acid 400, speeding channel recovery from inactivation. Numerous Kv1.1 mutations have been associated with the human disorder Episodic Ataxia Type-1 (EA1), characterized by stress-induced ataxia, myokymia, and increased prevalence of seizures. Three EA1 mutations, V404I, I407M, and V408A, are located within the RNA duplex structure required for RNA editing. Each mutation decreased RNA editing both in vitro and using an in vivo mouse model bearing the V408A allele. Editing of transcripts encoding mutant channels affects numerous biophysical properties including channel opening, closing, and inactivation. Thus EA1 symptoms could be influenced not only by the direct effects of the mutations on channel properties, but also by their influence on RNA editing. These studies provide the first evidence that mutations associated with human genetic disorders can affect cis-regulatory elements to alter RNA editing.


Assuntos
Canal de Potássio Kv1.1/metabolismo , Edição de RNA , Potenciais de Ação , Alelos , Animais , Ataxia/metabolismo , Ataxia/patologia , Encéfalo/metabolismo , Células HEK293 , Humanos , Canal de Potássio Kv1.1/genética , Masculino , Camundongos , Modelos Animais , Mutagênese Sítio-Dirigida , Mioquimia/metabolismo , Mioquimia/patologia , Oócitos/metabolismo , Oócitos/fisiologia , Elementos Reguladores de Transcrição/genética , Medula Espinal/metabolismo , Xenopus/crescimento & desenvolvimento
9.
EMBO Mol Med ; 8(8): 878-94, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27406820

RESUMO

The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Ingestão de Alimentos , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Receptor 5-HT2C de Serotonina/biossíntese , Receptor 5-HT2C de Serotonina/genética , Animais , Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Oligonucleotídeos/administração & dosagem , Pró-Opiomelanocortina/biossíntese , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética
10.
Neurobiol Dis ; 73: 407-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25447232

RESUMO

We previously demonstrated that heterozygous deletion of Gabra1, the mouse homolog of the human absence epilepsy gene that encodes the GABAA receptor (GABAAR) α1 subunit, causes absence seizures. We showed that cortex partially compensates for this deletion by increasing the cell surface expression of residual α1 subunit and by increasing α3 subunit expression. Absence seizures also involve two thalamic nuclei: the ventrobasal (VB) nucleus, which expresses only the α1 and α4 subtypes of GABAAR α subunits, and the reticular (nRT) nucleus, which expresses only the α3 subunit subtype. Here, we found that, unlike cortex, VB exhibited significantly reduced total and synaptic α1 subunit expression. In addition, heterozygous α1 subunit deletion substantially reduced miniature inhibitory postsynaptic current (mIPSC) peak amplitudes and frequency in VB. However, there was no change in the expression of the extrasynaptic α4 or δ subunits in VB and, unlike other models of absence epilepsy, no change in tonic GABAAR currents. Although heterozygous α1 subunit knockout increased α3 subunit expression in medial thalamic nuclei, it did not alter α3 subunit expression in nRT. However, it did enlarge the presynaptic vesicular inhibitory amino acid transporter puncta and lengthen the time constant of mIPSC decay in nRT. We conclude that increased tonic GABAA currents are not necessary for absence seizures. In addition, heterozygous loss of α1 subunit disinhibits VB by substantially reducing phasic GABAergic currents and surprisingly, it also increases nRT inhibition by prolonging phasic currents. The increased inhibition in nRT likely represents a partial compensation that helps reduce absence seizures.


Assuntos
Epilepsia Tipo Ausência/metabolismo , Potenciais Pós-Sinápticos Inibidores , Receptores de GABA-A/metabolismo , Transmissão Sináptica , Núcleos Talâmicos/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Epilepsia Tipo Ausência/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Edição de RNA , Receptores de GABA-A/genética
11.
Bioessays ; 36(8): 730-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24889193

RESUMO

The most recent work toward compiling a comprehensive database of adenosine-to-inosine RNA editing events suggests that the potential for RNA editing is much more pervasive than previously thought; indeed, it is manifest in more than 100 million potential editing events located primarily within Alu repeat elements of the human transcriptome. Pairs of inverted Alu repeats are found in a substantial number of human genes, and when transcribed, they form long double-stranded RNA structures that serve as optimal substrates for RNA editing enzymes. A small subset of edited Alu elements has been shown to exhibit diverse functional roles in the regulation of alternative splicing, miRNA repression, and cis-regulation of distant RNA editing sites. The low level of editing for the remaining majority may be non-functional, yet their persistence in the primate genome provides enhanced genomic flexibility that may be required for adaptive evolution.


Assuntos
Edição de RNA , Adenosina/genética , Elementos Alu , Animais , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inosina/genética , Biossíntese de Proteínas , Análise de Sequência de RNA
12.
Mol Cell Neurosci ; 61: 97-109, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24906008

RESUMO

Transcripts encoding ADAR1, a double-stranded, RNA-specific adenosine deaminase involved in the adenosine-to-inosine (A-to-I) editing of mammalian RNAs, can be alternatively spliced to produce an interferon-inducible protein isoform (p150) that is up-regulated in both cell culture and in vivo model systems in response to pathogen or interferon stimulation. In contrast to other tissues, p150 is expressed at extremely low levels in the brain and it is unclear what role, if any, this isoform may play in the innate immune response of the central nervous system (CNS) or whether the extent of editing for RNA substrates critical for CNS function is affected by its induction. To investigate the expression of ADAR1 isoforms in response to viral infection and subsequent alterations in A-to-I editing profiles for endogenous ADAR targets, we used a neurotropic strain of reovirus to infect neonatal mice and quantify A-to-I editing in discrete brain regions using a multiplexed, high-throughput sequencing strategy. While intracranial injection of reovirus resulted in a widespread increase in the expression of ADAR1 (p150) in multiple brain regions and peripheral organs, significant changes in site-specific A-to-I conversion were quite limited, suggesting that steady-state levels of p150 expression are not a primary determinant for modulating the extent of editing for numerous ADAR targets in vivo.


Assuntos
Adenosina Desaminase/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo , Edição de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Reoviridae/fisiologia , Adenosina Desaminase/genética , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Peso Corporal , Encéfalo/crescimento & desenvolvimento , Regulação Viral da Expressão Gênica/genética , Regulação Viral da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismo , Reoviridae/genética
13.
Neuropsychopharmacology ; 39(2): 370-82, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23939424

RESUMO

Relapse vulnerability in cocaine dependence is rooted in genetic and environmental determinants, and propelled by both impulsivity and the responsivity to cocaine-linked cues ('cue reactivity'). The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2C receptor (5-HT2CR) within the medial prefrontal cortex (mPFC) is uniquely poised to serve as a strategic nexus to mechanistically control these behaviors. The 5-HT2CR functional capacity is regulated by a number of factors including availability of active membrane receptor pools, the composition of the 5-HT2CR macromolecular protein complex, and editing of the 5-HT2CR pre-mRNA. The one-choice serial reaction time (1-CSRT) task was used to identify impulsive action phenotypes in an outbred rat population before cocaine self-administration and assessment of cue reactivity in the form of lever presses reinforced by the cocaine-associated discrete cue complex during forced abstinence. The 1-CSRT task reliably and reproducibly identified high impulsive (HI) and low impulsive (LI) action phenotypes; HI action predicted high cue reactivity. Lower cortical 5-HT2CR membrane protein levels concomitant with higher levels of 5-HT2CR:postsynaptic density 95 complex distinguished HI rats from LI rats. The frequency of edited 5-HT2CR mRNA variants was elevated with the prediction that the protein population in HI rats favors those isoforms linked to reduced signaling capacity. Genetic loss of the mPFC 5-HT2CR induced aggregate impulsive action/cue reactivity, suggesting that depressed cortical 5-HT2CR tone confers vulnerability to these interlocked behaviors. Thus, impulsive action and cue reactivity appear to neuromechanistically overlap in rodents, with the 5-HT2CR functional status acting as a neural rheostat to regulate, in part, the intersection between these vulnerability behaviors.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Fenótipo , Receptor 5-HT2C de Serotonina/deficiência , Receptor 5-HT2C de Serotonina/fisiologia , Animais , Comportamento Animal/fisiologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Masculino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2C de Serotonina/genética , Recidiva , Autoadministração
14.
Neurobiol Dis ; 45(1): 8-13, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21914481

RESUMO

Initially identified as an RNA modification in the anticodon loop of tRNAs from animal, plant and eubacterial origin, the deamination of adenosine-to-inosine by RNA editing has become increasingly recognized as an important RNA processing event to generate diversity in both the transcriptome and proteome and is essential for modulating the activity of numerous proteins critical for nervous system function. Here, we focus on the editing of transcripts encoding the 2C-subtype of serotonin receptor (5HT(2C)) to generate multiple receptor isoforms that differ in G-protein coupling efficacy and constitutive activity. 5HT(2C) receptors have been implicated in the regulation of anxiety, components of the stress response, and are thought to play a role in compulsive behavioral disorders, depression and drug addiction. A number of studies have been conducted to assess whether 5HT(2C) editing is altered in individuals suffering from psychiatric disorders, yet the results from these studies have been inconsistent, and thus inconclusive. This review provides a discussion of the challenges involved with characterizing 5HT(2C) editing patterns in human postmortem tissue samples and how differences in quantitative methodology have contributed to the observed inconsistencies between multiple laboratories. Additionally, we discuss new high-throughput sequencing tools, which provide an opportunity to overcome previous methodological challenges, and permit reliable systematic analyses of RNA editing in control and pathologic disease states.


Assuntos
Transtornos Mentais/genética , Edição de RNA , Receptor 5-HT2C de Serotonina/genética , Humanos , Transtornos Mentais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Transcriptoma
15.
Curr Top Microbiol Immunol ; 353: 61-90, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21796513

RESUMO

The central dogma of molecular biology defines the major route for the transfer of genetic information from genomic DNA to messenger RNA to three-dimensional proteins that affect structure and function. Like alternative splicing, the post-transcriptional conversion of adenosine to inosine (A-to-I) by RNA editing can dramatically expand the diversity of the transcriptome to generate multiple, functionally distinct protein isoforms from a single genomic locus. While RNA editing has been identified in virtually all tissues, such post-transcriptional modifications have been best characterized in RNAs encoding both ligand- and voltage-gated ion channels and neurotransmitter receptors. These RNA processing events have been shown to play an important role in the function of the encoded protein products and, in several cases, have been shown to be critical for the normal development and function of the nervous system.


Assuntos
Canais Iônicos/genética , Sistema Nervoso/metabolismo , Edição de RNA , Receptores de Neurotransmissores/genética , Adenosina Desaminase/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Proteínas de Ligação a RNA , Receptor 5-HT2C de Serotonina/genética , Receptores de AMPA/genética , Receptores de GABA-A/genética , Receptores de Ácido Caínico/genética
16.
Cell ; 143(2): 225-37, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20946981

RESUMO

Sequence-dependent recognition of dsDNA-binding proteins is well understood, yet sequence-specific recognition of dsRNA by proteins remains largely unknown, despite their importance in RNA maturation pathways. Adenosine deaminases that act on RNA (ADARs) recode genomic information by the site-selective deamination of adenosine. Here, we report the solution structure of the ADAR2 double-stranded RNA-binding motifs (dsRBMs) bound to a stem-loop pre-mRNA encoding the R/G editing site of GluR-2. The structure provides a molecular basis for how dsRBMs recognize the shape, and also more surprisingly, the sequence of the dsRNA. The unexpected direct readout of the RNA primary sequence by dsRBMs is achieved via the minor groove of the dsRNA and this recognition is critical for both editing and binding affinity at the R/G site of GluR-2. More generally, our findings suggest a solution to the sequence-specific paradox faced by many dsRBM-containing proteins that are involved in post-transcriptional regulation of gene expression.


Assuntos
Adenosina Desaminase/química , RNA de Cadeia Dupla/química , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Precursores de RNA/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA , Ratos , Receptores de AMPA/genética , Alinhamento de Sequência
17.
Front Neurosci ; 4: 26, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20582266

RESUMO

Transcripts encoding 5-HT(2C) receptors are modified posttranscriptionally by RNA editing, generating up to 24 protein isoforms. In recombinant cells, the fully edited isoform, 5-HT(2C-VGV), exhibits blunted G-protein coupling and reduced constitutive activity. The present studies examine the signal transduction properties of 5-HT(2C-VGV) receptors in brain to determine the in vivo consequences of altered editing. Using mice solely expressing the 5-HT(2C-VGV) receptor (VGV/Y), we demonstrate reduced G-protein coupling efficiency and high-affinity agonist binding of brain 5-HT(2C-VGV) receptors. However, enhanced behavioral sensitivity to a 5-HT(2C) receptor agonist was also seen in mice expressing 5-HT(2C-VGV) receptors, an unexpected finding given the blunted G-protein coupling. In addition, mice expressing 5-HT(2C-VGV) receptors had greater sensitivity to a 5-HT(2C) inverse agonist/antagonist enhancement of dopamine turnover relative to wild-type mice. These behavioral and biochemical results are most likely explained by increases in 5-HT(2C) receptor binding sites in the brains of mice solely expressing 5-HT(2C-VGV) receptors. We conclude that 5-HT(2C-VGV) receptor signaling in brain is blunted, but this deficiency is masked by a marked increase in 5-HT(2C) receptor binding site density in mice solely expressing the VGV isoform. These findings suggest that RNA editing may regulate the density of 5-HT(2C) receptor binding sites in brain. We further caution that the pattern of 5-HT(2C) receptor RNA isoforms may not reflect the pattern of protein isoforms, and hence the inferred overall function of the receptor.

18.
Neurobiol Dis ; 39(2): 169-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20394819

RESUMO

RNA transcripts encoding the 2C-subtype of serotonin (5HT(2C)) receptor undergo up to five adenosine-to-inosine editing events to encode twenty-four protein isoforms. To examine the effects of altered 5HT(2C) editing in vivo, we generated mutant mice solely expressing the fully-edited (VGV) isoform of the receptor. Mutant animals present phenotypic characteristics of Prader-Willi syndrome (PWS) including a failure to thrive, decreased somatic growth, neonatal muscular hypotonia, and reduced food consumption followed by post-weaning hyperphagia. Though previous studies have identified alterations in both 5HT(2C) receptor expression and 5HT(2C)-mediated behaviors in both PWS patients and mouse models of this disorder, to our knowledge the 5HT(2C) gene is the first locus outside the PWS imprinted region in which mutations can phenocopy numerous aspects of this syndrome. These results not only strengthen the link between the molecular etiology of PWS and altered 5HT(2C) expression, but also demonstrate the importance of normal patterns of 5HT(2C) RNA editing in vivo.


Assuntos
Regulação da Expressão Gênica/genética , Síndrome de Prader-Willi/genética , Edição de RNA/genética , Receptor 5-HT2C de Serotonina/genética , Animais , Animais Recém-Nascidos , Análise Mutacional de DNA , Modelos Animais de Doenças , Comportamento Alimentar/fisiologia , Feminino , Força da Mão/fisiologia , Humanos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Síndrome de Prader-Willi/patologia , Síndrome de Prader-Willi/fisiopatologia , Desempenho Psicomotor/fisiologia , RNA Mensageiro/metabolismo
19.
Mol Pharmacol ; 77(6): 895-902, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20181818

RESUMO

RNA editing is a post-transcriptional modification in which adenosine residues are converted to inosine (adenosine-to-inosine editing). Commonly used methodologies to quantify RNA editing levels involve either direct sequencing or pyrosequencing of individual cDNA clones. The limitations of these methods lead to a small number of clones characterized in comparison to the number of mRNA molecules in the original sample, thereby producing significant sampling errors and potentially erroneous conclusions. We have developed an improved method for quantifying RNA editing patterns that increases sequence analysis to an average of more than 800,000 individual cDNAs per sample, substantially increasing accuracy and sensitivity. Our method is based on the serotonin 2C receptor (5-hydroxytryptamine(2C); 5HT(2C)) transcript, an RNA editing substrate in which up to five adenosines are modified. Using a high-throughput multiplexed transcript analysis, we were able to quantify accurately the expression of twenty 5HT(2C) isoforms, each representing at least 0.25% of the total 5HT(2C) transcripts. Furthermore, this approach allowed the detection of previously unobserved changes in 5HT(2C) editing in RNA samples isolated from different inbred mouse strains and dissected brain regions, as well as editing differences in alternatively spliced 5HT(2C) variants. This approach provides a novel and efficient strategy for large-scale analyses of RNA editing and may prove to be a valuable tool for uncovering new information regarding editing patterns in specific disease states and in response to pharmacological and physiological perturbation, further elucidating the impact of 5HT(2C) RNA editing on central nervous system function.


Assuntos
Edição de RNA , RNA Mensageiro/genética , Receptor 5-HT2C de Serotonina/genética , Animais , Sequência de Bases , DNA Complementar , Masculino , Camundongos , Camundongos Endogâmicos
20.
J Neurosci Methods ; 179(2): 247-57, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19428534

RESUMO

The serotonin 2C receptor (5-HT(2C)R) plays a significant role in psychiatric disorders (e.g., depression) and is a target for pharmacotherapy. The 5-HT(2C)R is widely expressed in brain and spinal cord and is the only G-protein coupled receptor currently known to undergo mRNA editing, a post-transcriptional modification that results in translation of distinct, though closely related, protein isoforms. The 5-HT(2C)R RNA can be edited at five sites to alter up to three amino acids resulting in modulation of receptor:G-protein coupling and constitutive activity. To rapidly quantify changes ex vivo in individual 5-HT(2C)R isoform levels in response to treatment, we adapted quantitative (real-time) reverse transcription polymerase chain reaction (qRT-PCR) utilizing TaqMan probes modified with a minor groove binder (MGB). Probes were developed for four 5-HT(2C)R RNA isoforms and their sensitivity and specificity were validated systematically using standard templates. Relative expression of the four isoforms was measured in cDNAs from whole brain extracted from 129S6 and C57BL/6J mice. Rank order derived from this qRT-PCR analysis matched that derived from DNA sequencing. In mutant mice solely expressing either non-edited or fully edited 5-HT(2C)R transcripts, only expected transcripts were detected. These data suggest this qRT-PCR method is a precise and rapid means to detect closely related mRNA sequences ex vivo without the necessity of characterizing the entire 5-HT(2C)R profile. Implementation of this technique will expand and expedite studies of specific brain 5-HT(2C)R mRNA isoforms in response to pharmacological, behavioral and genetic manipulation, particularly in ex vivo studies which require rapid collection of data on large numbers of samples.


Assuntos
Encéfalo/metabolismo , Edição de RNA/genética , RNA Mensageiro/metabolismo , Receptor 5-HT2C de Serotonina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Processamento Alternativo/genética , Animais , Sequência de Bases/genética , Perfilação da Expressão Gênica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Isoformas de Proteínas/genética , Processamento Pós-Transcricional do RNA/genética , Sensibilidade e Especificidade , Serotonina/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...