Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-486152

RESUMO

An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. The basis for such cross-protection at the molecular level is incompletely understood. Here we characterized the repertoire and epitope specificity of antibodies elicited by Beta, Gamma and ancestral variant infection and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a high-throughput approach to obtain immunoglobulin sequences and produce monoclonal antibodies for functional assessment from single B cells. Infection with any variant elicited similar cross-binding antibody responses exhibiting a remarkably conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may represent a general immunological principle that accounts for the continued efficacy of vaccines based on a single ancestral variant.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-432969

RESUMO

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOC) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identify four receptor-binding domain targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 12 variants including the B.1.1.7 and B.1.351 VOCs. Two of them are ultrapotent, with sub-nanomolar neutralization titers (IC50 <0.0006 to 0.0102 g/mL; IC80 < 0.0006 to 0.0251 g/mL). We define the structural and functional determinants of binding for all four VOC-targeting antibodies, and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting potential means to mitigate resistance development. These results define the basis of therapeutic cocktails against VOCs and suggest that targeted boosting of existing immunity may increase vaccine breadth against VOCs. One Sentence SummaryUltrapotent antibodies from convalescent donors neutralize and mitigate resistance of SARS-CoV-2 variants of concern.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-166033

RESUMO

Biotin-labeled molecular probes, comprising specific regions of the SARS-CoV-2 spike, would be helpful in the isolation and characterization of antibodies targeting this recently emerged pathogen. To develop such probes, we designed constructs incorporating an N-terminal purification tag, a site-specific protease-cleavage site, the probe region of interest, and a C-terminal sequence targeted by biotin ligase. Probe regions included full-length spike ectodomain as well as various subregions, and we also designed mutants to eliminate recognition of the ACE2 receptor. Yields of biotin-labeled probes from transient transfection ranged from [~]0.5 mg/L for the complete ectodomain to >5 mg/L for several subregions. Probes were characterized for antigenicity and ACE2 recognition, and the structure of the spike ectodomain probe was determined by cryo-electron microscopy. We also characterized antibody-binding specificities and cell-sorting capabilities of the biotinylated probes. Altogether, structure-based design coupled to efficient purification and biotinylation processes can thus enable streamlined development of SARS-CoV-2 spike-ectodomain probes.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-145920

RESUMO

A SARS-CoV-2 vaccine is needed to control the global COVID-19 public health crisis. Atomic-level structures directed the application of prefusion-stabilizing mutations that improved expression and immunogenicity of betacoronavirus spike proteins. Using this established immunogen design, the release of SARS-CoV-2 sequences triggered immediate rapid manufacturing of an mRNA vaccine expressing the prefusion-stabilized SARS-CoV-2 spike trimer (mRNA-1273). Here, we show that mRNA-1273 induces both potent neutralizing antibody and CD8 T cell responses and protects against SARS-CoV-2 infection in lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a Phase 2 clinical trial with a trajectory towards Phase 3 efficacy evaluation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...