Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280727

RESUMO

Oral antivirals can potentially reduce the burden of COVID-19. However, low SARS-CoV-2 clinical testing rates in many low- and middle-income countries (LMICs) (mean <10 tests/100,000 people/day, July 2022) makes the development of effective test- and-treat programs challenging. Here, we used an agent-based model to investigate how testing rates and strategies could affect development of test- and-treat programs in three representative LMICs. We find that at <10 tests/100,000 people/day, test- and-treat programs are unlikely to have any impact on the public health burden of COVID-19. At low effective transmission rates (Rt [≤] 1.2), increasing to 100 tests/100,000 people/day and allowing uncapped distribution of antivirals to LMICs (estimate = 26,000,000-90,000,000 courses/year for all LMICs), could avert up to 65% of severe cases, particularly in countries with older populations. For higher Rt, significant reductions in severe cases are only possible by substantially increasing testing rates or restricting clinical testing to those with higher risk of severe disease.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276516

RESUMO

BackgroundIncreasing the availability of antigen rapid diagnostic tests (Ag-RDTs) in low- and middle-income countries (LMICs) is key to alleviating global SARS-CoV-2 testing inequity (median testing rate in December 2021-March 2022 when the Omicron variant was spreading in multiple countries; high-income countries=600 tests/100,000 people/day; LMICs=14 tests/ 100,000 people/day). However, target testing levels and effectiveness of asymptomatic community screening to impact SARS-CoV-2 transmission in LMICs are unclear. MethodsWe used PATAT, an LMIC-focused agent-based model to simulate COVID-19 epidemics, varying the amount of Ag-RDTs available for symptomatic testing at healthcare facilities and asymptomatic community testing in different social settings. We assumed that testing was a function of access to healthcare facilities and availability of Ag-RDTs. We explicitly modelled symptomatic testing demand from non-SARS-CoV-2 infected individuals and measured impact based on the number of infections averted due to test-and-isolate. ResultsTesting symptomatic individuals yields greater benefits than any asymptomatic community testing strategy until most symptomatic individuals who sought testing have been tested. Meeting symptomatic testing demand likely requires at least 200-400 tests/100,000 people/day on average as symptomatic testing demand is highly influenced by non-SARS-CoV-2 infected individuals. After symptomatic testing demand is satisfied, excess tests to proactively screen for asymptomatic infections among household members yields the largest additional infections averted. ConclusionsTesting strategies aimed at reducing transmission should prioritize symptomatic testing and incentivizing test-positive individuals to adhere to isolation to maximize effectiveness.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275319

RESUMO

The first step in SARS-CoV-2 genomic surveillance is testing to identify infected people. However, global testing rates are falling as we emerge from the acute health emergency and remain low in many low- and middle-income countries (LMICs) (mean = 27 tests/100,000 people/day). We simulated COVID-19 epidemics in a prototypical LMIC to investigate how testing rates, sampling strategies, and sequencing proportions jointly impact surveillance outcomes and showed that low testing rates and spatiotemporal biases delay time-to-detection of new variants by weeks-to-months and can lead to unreliable estimates of variant prevalence even when the proportion of samples sequenced is increased. Accordingly, investments in wider access to diagnostics to support testing rates of [~]100 tests/100,000 people/day could enable more timely detection of new variants and reliable estimates of variant prevalence. The performance of global SARS-CoV-2 genomic surveillance programs is fundamentally limited by access to diagnostic testing.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256154

RESUMO

BackgroundCountries around the world have implemented restrictions on mobility, especially cross-border travel to reduce or prevent SARS-CoV-2 community transmission. Rapid antigen testing (Ag-RDT), with on-site administration and rapid turnaround time may provide a valuable screening measure to ease cross-border travel while minimizing risk of local transmission. To maximize impact, we developed an optimal Ag-RDT screening algorithm for cross-border entry. MethodsUsing a previously developed mathematical model, we determined the daily number of imported COVID-19 cases that would generate no more than a relative 1% increase in cases over one month for different effective reproductive numbers (Rt) of the recipient country. We then developed an algorithm- for differing levels of Rt, arrivals per day, mode of travel, and SARS-CoV-2 prevalence amongst travelers-to determine the minimum proportion of people that would need Ag-RDT testing at border crossings to ensure no greater than the relative 1% community spread increase. FindingsWhen daily international arrivals and/or COVID-19 prevalence amongst arrivals increases, the proportion of arrivals required to test using Ag-RDT increases. At very high numbers of international arrivals/COVID-19 prevalence, Ag-RDT testing is not sufficient to prevent increased community spread, especially for lower levels of Rt. In these cases, Ag-RDT screening would need to be supplemented with other measures to prevent an increase in community transmission. InterpretationAn efficient Ag-RDT algorithm for SARS-CoV-2 testing depends strongly on Rt, volume of travel, proportion of land and air arrivals, test sensitivity, and COVID-19 prevalence among travelers. FundingUSAID, Government of the Netherlands

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...