Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2220532121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38207077

RESUMO

MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression that have been implicated in a plethora of neuronal processes. Nevertheless, their role in regulating brain activity in the context of sleep has so far received little attention. To test their involvement, we deleted mature miRNAs in post-mitotic neurons at two developmental ages, i.e., in early adulthood using conditional Dicer knockout (cKO) mice and in adult mice using an inducible conditional Dicer cKO (icKO) line. In both models, electroencephalographic (EEG) activity was affected and the response to sleep deprivation (SD) altered; while the rapid-eye-movement sleep (REMS) rebound was compromised in both, the increase in EEG delta (1 to 4 Hz) power during non-REMS (NREMS) was smaller in cKO mice and larger in icKO mice compared to controls. We subsequently investigated the effects of SD on the forebrain miRNA transcriptome and found that the expression of 48 miRNAs was affected, and in particular that of the activity-dependent miR-709. In vivo inhibition of miR-709 in the brain increased EEG power during NREMS in the slow-delta (0.75 to 1.75 Hz) range, particularly after periods of prolonged wakefulness. Transcriptome analysis of primary cortical neurons in vitro revealed that miR-709 regulates genes involved in glutamatergic neurotransmission. A subset of these genes was also affected in the cortices of sleep-deprived, miR-709-inhibited mice. Our data implicate miRNAs in the regulation of EEG activity and indicate that miR-709 links neuronal activity during wakefulness to brain synchrony during sleep through the regulation of glutamatergic signaling.


Assuntos
MicroRNAs , Sono , Camundongos , Animais , Sono/fisiologia , Privação do Sono/genética , Eletroencefalografia , Vigília/fisiologia , Prosencéfalo , MicroRNAs/genética , MicroRNAs/farmacologia
2.
Clocks Sleep ; 4(1): 37-51, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35225952

RESUMO

Both sleep-wake behavior and circadian rhythms are tightly coupled to energy metabolism and food intake. Altered feeding times in mice are known to entrain clock gene rhythms in the brain and liver, and sleep-deprived humans tend to eat more and gain weight. Previous observations in mice showing that sleep deprivation (SD) changes clock gene expression might thus relate to altered food intake, and not to the loss of sleep per se. Whether SD affects food intake in the mouse and how this might affect clock gene expression is, however, unknown. We therefore quantified (i) the cortical expression of the clock genes Per1, Per2, Dbp, and Cry1 in mice that had access to food or not during a 6 h SD, and (ii) food intake during baseline, SD, and recovery sleep. We found that food deprivation did not modify the SD-incurred clock gene changes in the cortex. Moreover, we discovered that although food intake during SD did not differ from the baseline, mice lost weight and increased food intake during subsequent recovery. We conclude that SD is associated with food deprivation and that the resulting energy deficit might contribute to the effects of SD that are commonly interpreted as a response to sleep loss.

3.
Elife ; 102021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34895464

RESUMO

In the mouse, Period-2 (Per2) expression in tissues peripheral to the suprachiasmatic nuclei (SCN) increases during sleep deprivation and at times of the day when animals are predominantly awake spontaneously, suggesting that the circadian sleep-wake distribution directly contributes to the daily rhythms in Per2. We found support for this hypothesis by recording sleep-wake state alongside PER2 bioluminescence in freely behaving mice, demonstrating that PER2 bioluminescence increases during spontaneous waking and decreases during sleep. The temporary reinstatement of PER2-bioluminescence rhythmicity in behaviorally arrhythmic SCN-lesioned mice submitted to daily recurring sleep deprivations substantiates our hypothesis. Mathematical modeling revealed that PER2 dynamics can be described by a damped harmonic oscillator driven by two forces: a sleep-wake-dependent force and an SCN-independent circadian force. Our work underscores the notion that in peripheral tissues the clock gene circuitry integrates sleep-wake information and could thereby contribute to behavioral adaptability to respond to homeostatic requirements.


Circadian rhythms are daily cycles in behavior and physiology which repeat approximately every 24 hours. The master regulator of these rhythms is located in a small part of the brain called the supra-chiasmatic nucleus. This brain structure regulates the timing of sleep and wakefulness and is also thought to control the daily rhythms of cells throughout the body on a molecular level. It does this by synchronizing the activity of a set of genes called clock genes. Under normal conditions, the levels of proteins coded for by clock genes change throughout the day following a rhythm that matches sleep-wake patterns. However, keeping animals and humans awake at their preferred sleeping times affects the protein levels of clock genes in many tissues of the body. This suggests that, in addition to the supra-chiasmatic nucleus, sleep-wake cycles may also influence clock-gene rhythms throughout the body. To test this theory, Hoekstra, Jan et al. measured the levels of PERIOD-2, a protein coded for by the clock gene Period-2, while tracking sleep-wake states in mice. They did this by imaging a bioluminescent version of the PERIOD-2 protein in the brain and the kidneys, at the same time as they recorded the brain activity, movement and muscle response of animals. Results showed that PERIOD-2 increased on waking and decreased when mice fell asleep. Additionally, in mice lacking a circadian rhythm in sleep-wake behavior ­ whose changes in PERIOD-2 levels with respect to time were greatly reduced ­ imposing a regular sleep-wake cycle restored normal PERIOD-2 rhythmicity. Next, Hoekstra, Jan et al. developed a mathematical model to understand how sleep-wake cycles together with circadian rhythms affect clock-gene activity in the brain and kidneys. Computer simulations suggested that sleep-wake cycles and circadian factors act as forces of comparable strength driving clock-gene dynamics. Both need to act in concert to keep clock-genes rhythmic. The model also predicted the large and immediate effects of sleep deprivation on PERIOD-2 levels, giving further credence to the idea that waking accelerated clock-gene rhythms while sleeping slowed them down. Modelling also suggested that having regular clock-gene rhythms protects against sleep disturbances. In summary, this work shows how sleep patterns contribute to the daily rhythms in clock genes in the brain and body. The findings support the idea that well-timed sleep-wake schedules could help people to adjust to new time zones. It might also be useful to inform other strategies to reduce the health impacts of shift work.


Assuntos
Ritmo Circadiano/genética , Proteínas Circadianas Period/genética , Vigília/genética , Animais , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Teóricos , Sono , Núcleo Supraquiasmático/metabolismo
4.
Genes Dev ; 35(5-6): 329-334, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602874

RESUMO

It has been assumed that the suprachiasmatic nucleus (SCN) synchronizes peripheral circadian oscillators. However, this has never been convincingly shown, since biochemical time series experiments are not feasible in behaviorally arrhythmic animals. By using long-term bioluminescence recording in freely moving mice, we show that the SCN is indeed required for maintaining synchrony between organs. Surprisingly, however, circadian oscillations persist in the livers of mice devoid of an SCN or oscillators in cells other than hepatocytes. Hence, similar to SCN neurons, hepatocytes can maintain phase coherence in the absence of Zeitgeber signals produced by other organs or environmental cycles.


Assuntos
Relógios Circadianos/fisiologia , Hepatócitos/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Relógios Circadianos/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático/cirurgia
5.
Nat Commun ; 11(1): 3130, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561733

RESUMO

Sleep-wake driven changes in non-rapid-eye-movement sleep (NREM) sleep (NREMS) EEG delta (δ-)power are widely used as proxy for a sleep homeostatic process. Here, we noted frequency increases in δ-waves in sleep-deprived mice, prompting us to re-evaluate how slow-wave characteristics relate to prior sleep-wake history. We identified two classes of δ-waves; one responding to sleep deprivation with high initial power and fast, discontinuous decay during recovery sleep (δ2) and another unrelated to time-spent-awake with slow, linear decay (δ1). Reanalysis of previously published datasets demonstrates that δ-band heterogeneity after sleep deprivation is also present in human subjects. Similar to sleep deprivation, silencing of centromedial thalamus neurons boosted subsequent δ2-waves, specifically. δ2-dynamics paralleled that of temperature, muscle tone, heart rate, and neuronal ON-/OFF-state lengths, all reverting to characteristic NREMS levels within the first recovery hour. Thus, prolonged waking seems to necessitate a physiological recalibration before typical NREMS can be reinstated.


Assuntos
Ritmo Delta/fisiologia , Privação do Sono/fisiopatologia , Sono de Ondas Lentas/fisiologia , Vigília/fisiologia , Animais , Modelos Animais de Doenças , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Adulto Jovem
6.
Proc Natl Acad Sci U S A ; 116(51): 25773-25783, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31776259

RESUMO

The timing and duration of sleep results from the interaction between a homeostatic sleep-wake-driven process and a periodic circadian process, and involves changes in gene regulation and expression. Unraveling the contributions of both processes and their interaction to transcriptional and epigenomic regulatory dynamics requires sampling over time under conditions of unperturbed and perturbed sleep. We profiled mRNA expression and chromatin accessibility in the cerebral cortex of mice over a 3-d period, including a 6-h sleep deprivation (SD) on day 2. We used mathematical modeling to integrate time series of mRNA expression data with sleep-wake history, which established that a large proportion of rhythmic genes are governed by the homeostatic process with varying degrees of interaction with the circadian process, sometimes working in opposition. Remarkably, SD caused long-term effects on gene-expression dynamics, outlasting phenotypic recovery, most strikingly illustrated by a damped oscillation of most core clock genes, including Arntl/Bmal1, suggesting that enforced wakefulness directly impacts the molecular clock machinery. Chromatin accessibility proved highly plastic and dynamically affected by SD. Dynamics in distal regions, rather than promoters, correlated with mRNA expression, implying that changes in expression result from constitutively accessible promoters under the influence of enhancers or repressors. Serum response factor (SRF) was predicted as a transcriptional regulator driving immediate response, suggesting that SRF activity mirrors the build-up and release of sleep pressure. Our results demonstrate that a single, short SD has long-term aftereffects at the genomic regulatory level and highlights the importance of the sleep-wake distribution to diurnal rhythmicity and circadian processes.


Assuntos
Córtex Cerebral/metabolismo , Cromatina/genética , Ritmo Circadiano/genética , Expressão Gênica/genética , Sono/genética , Animais , Epigenômica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Resposta Sérica/metabolismo , Privação do Sono/genética , Vigília/genética
7.
Elife ; 82019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30720431

RESUMO

Sleep depriving mice affects clock-gene expression, suggesting that these genes contribute to sleep homeostasis. The mechanisms linking extended wakefulness to clock-gene expression are, however, not well understood. We propose CIRBP to play a role because its rhythmic expression is i) sleep-wake driven and ii) necessary for high-amplitude clock-gene expression in vitro. We therefore expect Cirbp knock-out (KO) mice to exhibit attenuated sleep-deprivation-induced changes in clock-gene expression, and consequently to differ in their sleep homeostatic regulation. Lack of CIRBP indeed blunted the sleep-deprivation incurred changes in cortical expression of Nr1d1, whereas it amplified the changes in Per2 and Clock. Concerning sleep homeostasis, KO mice accrued only half the extra REM sleep wild-type (WT) littermates obtained during recovery. Unexpectedly, KO mice were more active during lights-off which was accompanied with faster theta oscillations compared to WT mice. Thus, CIRBP adjusts cortical clock-gene expression after sleep deprivation and expedites REM-sleep recovery.


Assuntos
Proteínas CLOCK/biossíntese , Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Privação do Sono , Sono REM , Animais , Técnicas de Inativação de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a RNA/genética
8.
Curr Biol ; 29(3): 392-401.e4, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30686738

RESUMO

Rocking has long been known to promote sleep in infants and, more recently, also in adults, increasing NREM sleep stage N2 and enhancing EEG slow waves and spindles. Nevertheless, whether rocking also promotes sleep in other species, and what the underlying mechanisms are, has yet to be explored. In the current study, C57BL/6J mice equipped with EEG and EMG electrodes were rocked laterally during their main sleep period, i.e., the 12-h light phase. We observed that rocking affected sleep in mice with a faster optimal rate than in humans (1.0 versus 0.25 Hz). Specifically, rocking mice at 1.0 Hz increased time spent in NREM sleep through the shortening of wake episodes and accelerated sleep onset. Although rocking did not increase EEG activity in the slow-wave and spindle-frequency ranges in mice, EEG theta activity (6-10 Hz) during active wakefulness shifted toward slower frequencies. To test the hypothesis that the rocking effects are mediated through the vestibular system, we used the otoconia-deficient tilted (tlt) mouse, which cannot encode linear acceleration. Mice homozygous for the tlt mutation were insensitive to rocking at 1.0 Hz, while the sleep and EEG response of their heterozygous and wild-type littermates resembled those of C57BL/6J mice. Our findings demonstrate that rocking also promotes sleep in the mouse and that this effect requires input from functional otolithic organs of the vestibule. Our observations also demonstrate that the maximum linear acceleration applied, and not the rocking rate per se, is key in mediating the effects of rocking on sleep.


Assuntos
Encéfalo/fisiologia , Movimento (Física) , Sono/fisiologia , Vestíbulo do Labirinto/fisiologia , Animais , Eletroencefalografia , Eletromiografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissonografia
9.
PLoS Biol ; 16(8): e2005750, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30091978

RESUMO

Sleep is essential for optimal brain functioning and health, but the biological substrates through which sleep delivers these beneficial effects remain largely unknown. We used a systems genetics approach in the BXD genetic reference population (GRP) of mice and assembled a comprehensive experimental knowledge base comprising a deep "sleep-wake" phenome, central and peripheral transcriptomes, and plasma metabolome data, collected under undisturbed baseline conditions and after sleep deprivation (SD). We present analytical tools to interactively interrogate the database, visualize the molecular networks altered by sleep loss, and prioritize candidate genes. We found that a one-time, short disruption of sleep already extensively reshaped the systems genetics landscape by altering 60%-78% of the transcriptomes and the metabolome, with numerous genetic loci affecting the magnitude and direction of change. Systems genetics integrative analyses drawing on all levels of organization imply α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking and fatty acid turnover as substrates of the negative effects of insufficient sleep. Our analyses demonstrate that genetic heterogeneity and the effects of insufficient sleep itself on the transcriptome and metabolome are far more widespread than previously reported.


Assuntos
Camundongos Endogâmicos/genética , Camundongos/genética , Sono/genética , Animais , Bases de Dados Factuais , Metaboloma/genética , Privação do Sono/genética , Transcriptoma/genética
10.
Genes Dev ; 32(5-6): 347-358, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29572261

RESUMO

The circadian clock in animals orchestrates widespread oscillatory gene expression programs, which underlie 24-h rhythms in behavior and physiology. Several studies have shown the possible roles of transcription factors and chromatin marks in controlling cyclic gene expression. However, how daily active enhancers modulate rhythmic gene transcription in mammalian tissues is not known. Using circular chromosome conformation capture (4C) combined with sequencing (4C-seq), we discovered oscillatory promoter-enhancer interactions along the 24-h cycle in the mouse liver and kidney. Rhythms in chromatin interactions were abolished in arrhythmic Bmal1 knockout mice. Deleting a contacted intronic enhancer element in the Cryptochrome 1 (Cry1) gene was sufficient to compromise the rhythmic chromatin contacts in tissues. Moreover, the deletion reduced the daily dynamics of Cry1 transcriptional burst frequency and, remarkably, shortened the circadian period of locomotor activity rhythms. Our results establish oscillating and clock-controlled promoter-enhancer looping as a regulatory layer underlying circadian transcription and behavior.


Assuntos
Cromatina/metabolismo , Ritmo Circadiano/genética , Criptocromos/genética , Transcrição Gênica/genética , Animais , Proteínas CLOCK/genética , Cromatina/genética , Criptocromos/metabolismo , Elementos Facilitadores Genéticos/genética , Rim/fisiologia , Fígado/fisiologia , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/fisiologia , Deleção de Sequência/genética
11.
Sleep ; 39(3): 589-601, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26564124

RESUMO

STUDY OBJECTIVES: The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. METHODS: EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. RESULTS: Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. CONCLUSIONS: Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context.


Assuntos
Homeostase , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Sono/fisiologia , Fatores de Transcrição ARNTL/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Dopamina/metabolismo , Eletroencefalografia , Proteína 7 de Ligação a Ácidos Graxos/genética , Expressão Gênica , Homeostase/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Transdução de Sinais , Sono/genética , Vigília/genética , Vigília/fisiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-26683231

RESUMO

In mammals, including humans, nearly all physiological processes are subject to daily oscillations that are governed by a circadian timing system with a complex hierarchical structure. The central pacemaker, residing in the suprachiasmatic nucleus (SCN) of the ventral hypothalamus, is synchronized daily by photic cues transmitted from the retina to SCN neurons via the retinohypothalamic tract. In turn, the SCN must establish phase coherence between self-sustained and cell-autonomous oscillators present in most peripheral cell types. The synchronization signals (Zeitgebers) can be controlled more or less directly by the SCN. In mice and rats, feeding-fasting rhythms, which are driven by the SCN through rest-activity cycles, are the most potent Zeitgebers for the circadian oscillators of peripheral organs. Signaling through the glucocorticoid receptor and the serum response factor also participate in the phase entrainment of peripheral clocks, and these two pathways are controlled by the SCN independently of feeding-fasting rhythms. Body temperature rhythms, governed by the SCN directly and indirectly through rest-activity cycles, are perhaps the most surprising cues for peripheral oscillators. Although the molecular makeup of circadian oscillators is nearly identical in all cells, these oscillators are used for different purposes in the SCN and in peripheral organs.


Assuntos
Actinas/metabolismo , Temperatura Corporal/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Retina/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Relógios Biológicos , Sinais (Psicologia) , Jejum/fisiologia , Comportamento Alimentar/fisiologia , Humanos , Mamíferos , Camundongos , Ratos , Transdução de Sinais
13.
Sleep ; 38(9): 1381-94, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25581923

RESUMO

STUDY OBJECTIVES: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. DESIGN: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. SETTINGS: Mouse sleep-recording facility. PARTICIPANTS: Per2::Luciferase knock-in mice. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. CONCLUSIONS: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health.


Assuntos
Ritmo Circadiano/fisiologia , Homeostase/fisiologia , Proteínas Circadianas Period/metabolismo , Privação do Sono/fisiopatologia , Sono/fisiologia , Núcleo Supraquiasmático/fisiopatologia , Animais , Encéfalo/metabolismo , Feminino , Técnicas de Introdução de Genes , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/genética , Núcleo Supraquiasmático/lesões , Vigília/fisiologia
14.
Sleep ; 37(8): 1383-92, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25083019

RESUMO

STUDY OBJECTIVES: Traditionally, sleep studies in mammals are performed using electroencephalogram/electromyogram (EEG/EMG) recordings to determine sleep-wake state. In laboratory animals, this requires surgery and recovery time and causes discomfort to the animal. In this study, we evaluated the performance of an alternative, noninvasive approach utilizing piezoelectric films to determine sleep and wakefulness in mice by simultaneous EEG/EMG recordings. The piezoelectric films detect the animal's movements with high sensitivity and the regularity of the piezo output signal, related to the regular breathing movements characteristic of sleep, serves to automatically determine sleep. Although the system is commercially available (Signal Solutions LLC, Lexington, KY), this is the first statistical validation of various aspects of sleep. DESIGN: EEG/EMG and piezo signals were recorded simultaneously during 48 h. SETTING: Mouse sleep laboratory. PARTICIPANTS: Nine male and nine female CFW outbred mice. INTERVENTIONS: EEG/EMG surgery. MEASUREMENTS AND RESULTS: The results showed a high correspondence between EEG/EMG-determined and piezo-determined total sleep time and the distribution of sleep over a 48-h baseline recording with 18 mice. Moreover, the piezo system was capable of assessing sleep quality (i.e., sleep consolidation) and interesting observations at transitions to and from rapid eye movement sleep were made that could be exploited in the future to also distinguish the two sleep states. CONCLUSIONS: The piezo system proved to be a reliable alternative to electroencephalogram/electromyogram recording in the mouse and will be useful for first-pass, large-scale sleep screens for genetic or pharmacological studies. CITATION: Mang GM, Nicod J, Emmenegger Y, Donohue KD, O'Hara BF, Franken P. Evaluation of a piezoelectric system as an alternative to electroencephalogram/electromyogram recordings in mouse sleep studies.


Assuntos
Eletroencefalografia , Eletromiografia , Polissonografia/instrumentação , Polissonografia/métodos , Sono/fisiologia , Animais , Feminino , Masculino , Camundongos , Movimento/fisiologia , Sono REM/fisiologia , Vigília/fisiologia
15.
Genes Dev ; 27(13): 1526-36, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23824542

RESUMO

The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) in the hypothalamus, which is thought to set the phase of slave oscillators in virtually all body cells. However, due to the lack of appropriate in vivo recording technologies, it has been difficult to study how the SCN synchronizes oscillators in peripheral tissues. Here we describe the real-time recording of bioluminescence emitted by hepatocytes expressing circadian luciferase reporter genes in freely moving mice. The technology employs a device dubbed RT-Biolumicorder, which consists of a cylindrical cage with reflecting conical walls that channel photons toward a photomultiplier tube. The monitoring of circadian liver gene expression revealed that hepatocyte oscillators of SCN-lesioned mice synchronized more rapidly to feeding cycles than hepatocyte clocks of intact mice. Hence, the SCN uses signaling pathways that counteract those of feeding rhythms when their phase is in conflict with its own phase.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano , Regulação da Expressão Gênica , Hepatócitos/fisiologia , Fígado/metabolismo , Atividade Motora/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Comportamento Alimentar , Fígado/citologia , Medições Luminescentes , Masculino , Camundongos , Camundongos Pelados , Atividade Motora/genética , Transdução de Sinais , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/cirurgia
16.
Brain ; 136(Pt 5): 1592-608, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23616586

RESUMO

Astute control of brain activity states is critical for adaptive behaviours and survival. In mammals and birds, electroencephalographic recordings reveal alternating states of wakefulness, slow wave sleep and paradoxical sleep (or rapid eye movement sleep). This control is profoundly impaired in narcolepsy with cataplexy, a disease resulting from the loss of orexin/hypocretin neurotransmitter signalling in the brain. Narcolepsy with cataplexy is characterized by irresistible bouts of sleep during the day, sleep fragmentation during the night and episodes of cataplexy, a sudden loss of muscle tone while awake and experiencing emotions. The neural mechanisms underlying cataplexy are unknown, but commonly thought to involve those of rapid eye movement-sleep atonia, and cataplexy typically is considered as a rapid eye movement sleep disorder. Here we reassess cataplexy in hypocretin (Hcrt, also known as orexin) gene knockout mice. Using a novel video/electroencephalogram double-blind scoring method, we show that cataplexy is not a state per se, as believed previously, but a dynamic, multi-phased process involving a reproducible progression of states. A knockout-specific state and a stereotypical paroxysmal event were introduced to account for signals and electroencephalogram spectral characteristics not seen in wild-type littermates. Cataplexy almost invariably started with a brief phase of wake-like electroencephalogram, followed by a phase featuring high-amplitude irregular theta oscillations, defining an activity profile distinct from paradoxical sleep, referred to as cataplexy-associated state and in the course of which 1.5-2 s high-amplitude, highly regular, hypersynchronous paroxysmal theta bursts (∼7 Hz) occurred. In contrast to cataplexy onset, exit from cataplexy did not show a predictable sequence of activities. Altogether, these data contradict the hypothesis that cataplexy is a state similar to paradoxical sleep, even if long cataplexies may evolve into paradoxical sleep. Although not exclusive to overt cataplexy, cataplexy-associated state and hypersynchronous paroxysmal theta activities are highly enriched during cataplexy in hypocretin/orexin knockout mice. Their occurrence in an independent narcolepsy mouse model, the orexin/ataxin 3 transgenic mouse, undergoing loss of orexin neurons, was confirmed. Importantly, we document for the first time similar paroxysmal theta hypersynchronies (∼4 Hz) during cataplexy in narcoleptic children. Lastly, we show by deep recordings in mice that the cataplexy-associated state and hypersynchronous paroxysmal theta activities are independent of hippocampal theta and involve the frontal cortex. Cataplexy hypersynchronous paroxysmal theta bursts may represent medial prefrontal activity, associated in humans and rodents with reward-driven motor impulse, planning and conflict monitoring.


Assuntos
Cataplexia/diagnóstico , Cataplexia/fisiopatologia , Narcolepsia/diagnóstico , Narcolepsia/fisiopatologia , Ritmo Teta/fisiologia , Animais , Cataplexia/genética , Pré-Escolar , Eletroencefalografia/métodos , Feminino , Lobo Frontal/fisiopatologia , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Narcolepsia/genética , Especificidade da Espécie
17.
Sleep ; 36(3): 311-23, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23450268

RESUMO

STUDY OBJECTIVES: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. DESIGN: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. SETTING: Mouse sleep laboratory. PARTICIPANTS: Male mice. INTERVENTIONS: Sleep deprivation. RESULTS: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. CONCLUSIONS: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. CITATION: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas de Ligação a DNA/metabolismo , Eletroencefalografia/métodos , Homeostase/fisiologia , Proteínas Circadianas Period/metabolismo , Sono/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Expressão Gênica/fisiologia , Proteínas de Arcabouço Homer , Masculino , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos C57BL , Prosencéfalo/metabolismo , Privação do Sono/metabolismo
18.
Brain Behav Immun ; 27(1): 133-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23072727

RESUMO

The T-cell derived cytokine CD40 ligand is overexpressed in patients with autoimmune diseases. Through activation of its receptor, CD40 ligand leads to a tumor necrosis factor (TNF) receptor 1 (TNFR1) dependent impairment of locomotor activity in mice. Here we report that this effect is explained through a promotion of sleep, which was specific to non-rapid eye movement (NREM) sleep while REM sleep was suppressed. The increase in NREM sleep was accompanied by a decrease in EEG delta power during NREM sleep and by a decrease in the expression of transcripts in the cerebral cortex known to be associated with homeostatic sleep drive, such as Homer1a, Early growth response 2, Neuronal pentraxin 2, and Fos-like antigen 2. The effect of CD40 activation was mimicked by peripheral TNF injection and prevented by the TNF blocker etanercept. Our study indicates that sleep-wake dysregulation in autoimmune diseases may result from CD40 induced TNF:TNFR1 mediated alterations of molecular pathways, which regulate sleep-wake behavior.


Assuntos
Encéfalo , Antígenos CD40/metabolismo , Sono/fisiologia , Fator de Necrose Tumoral alfa , Animais , Anticorpos Monoclonais/farmacologia , Doenças Autoimunes/complicações , Doenças Autoimunes/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteína C-Reativa/efeitos dos fármacos , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Antígenos CD40/agonistas , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/efeitos dos fármacos , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Eletroencefalografia/efeitos dos fármacos , Eletromiografia , Etanercepte , Antígeno 2 Relacionado a Fos/efeitos dos fármacos , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Proteínas de Arcabouço Homer , Imunoglobulina G/farmacologia , Fatores Imunológicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Sono/efeitos dos fármacos , Transtornos do Sono do Ritmo Circadiano/complicações , Transtornos do Sono do Ritmo Circadiano/metabolismo , Sono REM/efeitos dos fármacos , Sono REM/fisiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
19.
PLoS One ; 4(1): e4238, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19156199

RESUMO

Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1-4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Sono/fisiologia , Vigília/fisiologia , Animais , Encéfalo/metabolismo , Ritmo Circadiano , GMP Cíclico/metabolismo , Eletroencefalografia/métodos , Eletromiografia/métodos , Camundongos , Camundongos Knockout , Mutação , Óxido Nítrico/metabolismo , Oscilometria , Privação do Sono
20.
Nat Neurosci ; 11(6): 683-92, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18488023

RESUMO

T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.


Assuntos
Relógios Biológicos/fisiologia , Dendritos/fisiologia , Núcleos da Linha Média do Tálamo/citologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Sono/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Anestésicos Locais/farmacologia , Animais , Animais Recém-Nascidos , Apamina/farmacologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Dendritos/ultraestrutura , Estimulação Elétrica/métodos , Eletroencefalografia/métodos , Inibidores Enzimáticos/farmacologia , Feminino , Técnicas In Vitro , Indóis/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Mibefradil/farmacologia , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp , Canais de Potássio Ativados por Cálcio de Condutância Baixa/deficiência , Tetrodotoxina/farmacologia , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...