Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(17): 7415-7424, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38578215

RESUMO

We found that a winter of abnormally low snowfall and numerous dust storms from eolian processes acting on exposed landscapes (including a major 4-day dust storm while onsite in May 2014) caused a cascade of impacts on the physical, chemical, and ecological functioning of the largest lake by volume in the High Arctic (Lake Hazen; Nunavut, Canada). MODIS imagery revealed that dust deposited in snowpacks on the lake's ice acted as light-absorbing impurities (LAIs), reducing surface reflectance and increasing surface temperatures relative to normal snowpack years, causing early snowmelt and drainage of meltwaters into the lake. LAIs remaining on the ice surface melted into the ice, causing premature candling and one of the earliest ice-offs and longest ice-free seasons on record for Lake Hazen. Meltwater inputs from snowpacks resulted in dilution of dissolved, and increased concentration of particulate bound, chemical species in Lake Hazen's upper water column. Spring inputs of nutrients increased both heterotrophy and algal productivity under the surface ice following snowmelt, with a net consumption of dissolved oxygen. As climate change continues to alter High Arctic temperatures and precipitation patterns, we can expect further changes in dust storm frequency and severity with corresponding impacts for freshwater ecosystems.


Assuntos
Poeira , Lagos , Estações do Ano , Regiões Árticas , Neve , Mudança Climática
2.
Environ Pollut ; 344: 123328, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38195024

RESUMO

Mountaintop removal coal mining leaves a legacy of disturbed landscapes and abandoned infrastructure with clear impacts on water resources; however, the intensity and persistence of this water pollution remains poorly characterized. Here we examined the downstream impacts of over a century of coal mining in the Crowsnest Pass (Alberta, Canada). Water samples were collected downstream of two historical coal mines: Tent Mountain and Grassy Mountain. Tent Mountain hosts a partially reclaimed surface mine that closed in 1983. Selenium concentrations downstream of Tent Mountain reached 185 µg/L in a lake below the mine spoil pile, and up to 23 µg/L in Crowsnest Creek, which drains the lake and the mine property. Further downstream, a well-dated sediment core from Crowsnest Lake records increases in sediment, selenium, lead, carbon, nitrogen, and polycyclic aromatic compounds that closely tracked the history of mining at Tent Mountain. In contrast, episodic discharge of mine water from abandoned underground adits at Grassy Mountain drive periodic (but short-term) increases in iron, various metals, and suspended sediment. These results underscore the lasting downstream impacts of abandoned and even reclaimed coal mines.


Assuntos
Minas de Carvão , Selênio , Poluentes Químicos da Água , Minas de Carvão/métodos , Ecossistema , Monitoramento Ambiental/métodos , Selênio/análise , Poluentes Químicos da Água/análise , Mineração , Água , Alberta , Carvão Mineral
3.
Environ Sci Technol ; 56(13): 9408-9416, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35709477

RESUMO

Polycyclic aromatic compounds (PACs) threaten the health of aquatic ecosystems. In northeastern Alberta, Canada, decades of oil sands mining and upgrading activities have increased PAC delivery into freshwaters. This PAC pollution adds to natural inputs from river erosion of bitumen-bearing McMurray Formation outcrops and wildfire inputs. Quantifying these petrogenic and pyrogenic PAC inputs, which is key for understanding industrial impacts, remains a challenge. To distinguish petrogenic from pyrogenic inputs, we characterized river water PACs before and after the 2016 Fort McMurray wildfire, one of the largest natural disasters in Canadian history. Samples of wildfire ash and outcropping bitumen allow us to distinguish between these important PAC sources. River PAC concentrations ranged over multiple orders of magnitude (10s-10 000s ng/L). Petrogenic PACs dominated most of the postfire period with only short-term episodes of pyrogenic signatures in burned watersheds due to the wash-in of ash from the watershed. Wildfire PAC inputs during these events resulted in exceptional increases in concentrations that met or exceeded high (petrogenic) background concentrations, driven by the natural erosion of outcropping bitumen. Our dataset offers the first quantification of these two important PAC sources in this industrialized region and provides new insight into the impacts of increasing wildfire frequency and severity across the Boreal Forest.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes Químicos da Água , Alberta , Ecossistema , Monitoramento Ambiental/métodos , Campos de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios , Poluentes Químicos da Água/análise
4.
Glob Chang Biol ; 27(17): 4040-4059, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33913236

RESUMO

The regional variability in tundra and boreal carbon dioxide (CO2 ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2 ) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m-2  yr-1 , respectively) compared to tundra (average annual NEE +10 and -2 g C m-2  yr-1 ). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high.


Assuntos
Dióxido de Carbono , Ecossistema , Carbono , Dióxido de Carbono/análise , Reprodutibilidade dos Testes , Estações do Ano , Solo , Tundra , Incerteza
5.
Water Res ; 183: 116071, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717650

RESUMO

Wildfires can have severe and lasting impacts on the water quality of aquatic ecosystems. However, our understanding of these impacts is founded primarily from studies of small watersheds with well-connected runoff regimes. Despite the predominance of large, low-relief rivers across the fire-prone Boreal forest, it is unclear to what extent and duration wildfire-related material (e.g., ash) can be observed within these systems that typically buffer upstream disturbance signals. Following the devastating 2016 Fort McMurray wildfire in western Canada, we initiated a multi-faceted water quality monitoring program that suggested brief (hours to days) wildfire signatures could be detected in several large river systems, particularly following rainfall events greater than 10 mm. Continuous monitoring of flow and water quality showed distinct, precipitation-associated signatures of ash transport in rivers draining expansive (800-100,000 km2) and partially-burned (<1-22 percent burned) watersheds, which were not evident in nearby unburned regions. Yields of suspended sediment, nutrients (nitrogen, phosphorus) and metals (lead, others) from impacted rivers were 1.2-10 times greater than from those draining unburned regions. Post-fire suspended sediment concentrations in impacted rivers were often larger than pre-fire 95% prediction intervals based on several years of water sampling. These multiple lines of evidence indicate that low-relief landscapes can mobilize wildfire-related material to rivers similarly, though less-intensively and over shorter durations, than headwater regions. We propose that uneven mixing of heavily-impacted tributaries with high-order rivers may partially explain detection of wildfire signals in these large systems that may impact downstream water users.


Assuntos
Qualidade da Água , Incêndios Florestais , Canadá , Ecossistema , Rios
6.
Environ Sci Technol ; 53(14): 8017-8026, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31250626

RESUMO

Mercury (Hg) is a global pollutant released from both natural and human sources. Here we compare long-term records of wet deposition loadings of total Hg (THg) in the open to dry deposition loadings of THg in throughfall and litterfall under four boreal mixedwood canopy types at the remote Experimental Lakes Area (ELA) in Northwestern Ontario, Canada. We also present long-term records of atmospheric concentrations of gaseous elemental (GEM), gaseous oxidized (GOM), and particle bound (PBM) Hg measured at the ELA. We show that dry THg loadings in throughfall and litterfall are 2.7 to 6.1 times greater than wet THg loadings in the open. GEM concentrations showed distinct monthly and daily patterns, correlating positively in spring and summer with rates of gross ecosystem productivity and respiration. GOM and PBM concentrations were less variable throughout the year but were highest in the winter, when concentrations of anthropogenically sourced particles and gases were also high. Forest fires, Arctic air masses, and road salt also impacted GEM, GOM, and PBM concentrations at the ELA. A nested GEOS-Chem simulation for the ELA region produced a dry/wet deposition ratio of >5, suggesting that the importance of dry deposition in forested regions can be reasonably modeled by existing schemes for trace gases.


Assuntos
Poluentes Atmosféricos , Mercúrio , Ecossistema , Monitoramento Ambiental , Humanos , Lagos , Ontário
7.
Environ Sci Technol ; 52(19): 10946-10955, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30229653

RESUMO

Increased delivery of mercury to ecosystems is a common consequence of industrialization, including in the Athabasca Oil Sands Region (AOSR) of Canada. Atmospheric mercury deposition has been studied previously in the AOSR; however, less is known about the impact of regional industry on toxic methylmercury (MeHg) concentrations in lake ecosystems. We measured total mercury (THg) and MeHg concentrations for five years from 50 lakes throughout the AOSR. Mean lake water concentrations of THg (0.4-5.3 ng L-1) and MeHg (0.01-0.34 ng L-1) were similar to those of other boreal lakes and <5% of all samples exceeded Provincial water quality guidelines. Lakes with the highest THg concentrations were found >100 km northwest of oil sands mines and received runoff from geological formations high in metals concentrations. MeHg concentrations were highest in those lakes, and in smaller productive lakes closer to oil sands mines. Simulated annual average direct deposition of THg to sampled lakes using an atmospheric chemical transport model showed <2% of all mercury deposited to sampled lakes was emitted from oil sands activities. Consequently, spatial patterns of mercury in AOSR lakes were likely most influenced by watershed and lake conditions, though mercury concentrations in these lakes may be perturbed with future development and climatic change.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Canadá , Ecossistema , Monitoramento Ambiental , Lagos , Campos de Petróleo e Gás , Óleo de Brassica napus
8.
Nat Commun ; 9(1): 1290, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599477

RESUMO

Using a whole-watershed approach and a combination of historical, contemporary, modeled and paleolimnological datasets, we show that the High Arctic's largest lake by volume (Lake Hazen) has succumbed to climate warming with only a ~1 °C relative increase in summer air temperatures. This warming deepened the soil active layer and triggered large mass losses from the watershed's glaciers, resulting in a ~10 times increase in delivery of glacial meltwaters, sediment, organic carbon and legacy contaminants to Lake Hazen, a >70% decrease in lake water residence time, and near certainty of summer ice-free conditions. Concomitantly, the community assemblage of diatom primary producers in the lake shifted dramatically with declining ice cover, from shoreline benthic to open-water planktonic species, and the physiological condition of the only fish species in the lake, Arctic Char, declined significantly. Collectively, these changes place Lake Hazen in a biogeochemical, limnological and ecological regime unprecedented within the past ~300 years.

9.
Glob Chang Biol ; 22(3): 1185-200, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26279166

RESUMO

High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near-zero sink of atmospheric CO2 (NEE: -0.3 ± 13.5 g C m(-2) ). A nearby meadow wetland accumulated over 300 times more carbon (NEE: -79.3 ± 20.0 g C m(-2) ) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on-site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate-related changes to productivity on polar semideserts may be restricted.


Assuntos
Ciclo do Carbono , Dióxido de Carbono/análise , Mudança Climática , Ecossistema , Regiões Árticas , Nunavut , Estações do Ano
10.
Sci Total Environ ; 509-510: 41-66, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24993511

RESUMO

The Canadian Arctic has vast freshwater resources, and fish are important in the diet of many Northerners. Mercury is a contaminant of concern because of its potential toxicity and elevated bioaccumulation in some fish populations. Over the last decade, significant advances have been made in characterizing the cycling and fate of mercury in these freshwater environments. Large amounts of new data on concentrations, speciation and fluxes of Hg are provided and summarized for water and sediment, which were virtually absent for the Canadian Arctic a decade ago. The biogeochemical processes that control the speciation of mercury remain poorly resolved, including the sites and controls of methylmercury production. Food web studies have examined the roles of Hg uptake, trophic transfer, and diet for Hg bioaccumulation in fish, and, in particular, advances have been made in identifying determinants of mercury levels in lake-dwelling and sea-run forms of Arctic char. In a comparison of common freshwater fish species that were sampled across the Canadian Arctic between 2002 and 2009, no geographic patterns or regional hotspots were evident. Over the last two to four decades, Hg concentrations have increased in some monitored populations of fish in the Mackenzie River Basin while other populations from the Yukon and Nunavut showed no change or a slight decline. The different Hg trends indicate that the drivers of temporal change may be regional or habitat-specific. The Canadian Arctic is undergoing profound environmental change, and preliminary evidence suggests that it may be impacting the cycling and bioaccumulation of mercury. Further research is needed to investigate climate change impacts on the Hg cycle as well as biogeochemical controls of methylmercury production and the processes leading to increasing Hg levels in some fish populations in the Canadian Arctic.


Assuntos
Ecossistema , Monitoramento Ambiental , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Regiões Árticas , Canadá , Cadeia Alimentar
11.
Environ Sci Technol ; 47(14): 7644-54, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23800098

RESUMO

Circumpolar rivers, including the Mackenzie River in Canada, are sources of the contaminant mercury (Hg) to the Arctic Ocean, but few Hg export studies exist for these rivers. During the 2007-2010 freshet and open water seasons, we collected river water upstream and downstream of the Mackenzie River delta to quantify total mercury (THg) and methylmercury (MeHg) concentrations and export. Upstream of the delta, flow-weighted mean concentrations of bulk THg and MeHg were 14.6 ± 6.2 ng L(-1) and 0.081 ± 0.045 ng L(-1), respectively. Only 11-13% and 44-51% of bulk THg and MeHg export was in the dissolved form. Using concentration-discharge relationships, we calculated bulk THg and MeHg export into the delta of 2300-4200 kg yr(-1) and 15-23 kg yr(-1) over the course of the study. Discharge is not presently known in channels exiting the delta, so we assessed differences in river Hg concentrations upstream and downstream of the delta to estimate its influence on Hg export to the ocean. Bulk THg and MeHg concentrations decreased 19% and 11% through the delta, likely because of particle settling and other processes in the floodplain. These results suggest that northern deltas may be important accumulators of river Hg in their floodplains before export to the Arctic Ocean.


Assuntos
Mercúrio/química , Poluentes Químicos da Água/química , Alberta , Regiões Árticas , Rios
12.
Environ Sci Technol ; 46(19): 10514-22, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22779785

RESUMO

The sources of methylmercury (MeHg; the toxic form of mercury that is biomagnified through foodwebs) to Arctic freshwater organisms have not been clearly identified. We used a mass balance approach to quantify MeHg production in two wetland ponds in the Lake Hazen region of northern Ellesmere Island, NU, in the Canadian High Arctic and to evaluate the importance of these systems as sources of MeHg to Arctic foodwebs. We show that internal production (1.8-40 ng MeHg m(-2) d(-1)) is a much larger source of MeHg than external inputs from direct atmospheric deposition (0.029-0.051 ng MeHg m(-2) d(-1)), as expected. Furthermore, MeHg cycling in these systems is dominated by Hg(II) methylation and MeHg photodemethylation (2.0-33 ng MeHg m(-2) d(-1)), which is a sink for a large proportion of the MeHg produced by Hg(II) methylation in these ponds. We also show that MeHg production in the two study ponds is comparable to what has previously been measured in numerous more southerly systems known to be important MeHg sources, such as temperate wetlands and lakes, demonstrating that wetland ponds in the High Arctic are important sources of MeHg to local aquatic foodwebs.


Assuntos
Compostos de Metilmercúrio/metabolismo , Lagoas , Poluentes Químicos da Água/metabolismo , Áreas Alagadas , Animais , Regiões Árticas , Atmosfera , Daphnia/metabolismo , Ecossistema , Monitoramento Ambiental , Compostos de Metilmercúrio/análise , Nunavut , Poluentes Químicos da Água/análise , Zooplâncton/química
13.
Sci Total Environ ; 407(8): 2980-8, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19215970

RESUMO

Estimates of mercury (Hg) loadings to the Arctic Ocean from circumpolar rivers have not considered biogeochemical changes that occur when river water is temporarily stored in large deltas (delta effect). There are also few data describing Hg changes across the freshwater-saltwater transition zone (FSTZ) of these rivers. We assessed temporal changes in unfiltered total mercury (THg) and methylmercury (MeHg) concentrations during open-water 2004 in the Mackenzie River upstream of the Mackenzie River delta, and in 6 floodplain lakes across an elevation gradient. These data were used to calculate Hg fluxes from the Mackenzie River and to evaluate a delta effect on Hg using an estimate of delta river water storage and a mixing analysis. Mean THg concentrations were highest in river water (9.17+/-5.51 ng/L) and decreased up the lake elevation gradient. Mean MeHg concentrations were highest in lakes periodically connected to the river (0.213+/-0.122 ng/L) and MeHg concentrations in elevated lakes showed a mid-summer peak. Results from the mixing analysis showed that the delta effect may be large enough to affect Hg loadings to the Arctic Ocean. THg concentrations exiting the delta (10.2 ng/L) were 16% lower than those entering (12.1 ng/L), whereas MeHg showed little change. We calculated 2.5-month (open-water) THg and MeHg fluxes from the Mackenzie River of 1208 and 8.4 kg. These fluxes are similar in magnitude to previous annual estimates in the arctic literature suggesting that previously published annual Hg fluxes from the Mackenzie River may be large underestimates. We also assessed changes in Mackenzie River water THg and MeHg concentrations as it crossed the FSTZ during an open-water cruise. THg decreased non-conservatively across the estuary from 3.8-0.6 ng/L, possibly due to mixing and particle settling. MeHg concentrations were variable and near detection. Our results show that the Mackenzie River estuary is a dynamic environment and may have important controls on Hg delivered to the Arctic Ocean.


Assuntos
Mercúrio/análise , Compostos de Metilmercúrio/análise , Água/química , Canadá , Monitoramento Ambiental , Oceanos e Mares , Rios/química , Estações do Ano , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...