Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; : e3449, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477447

RESUMO

Cell line development (CLD) represents a complex but highly critical process during the development of a biological drug. To shed light on this crucial workflow, a team of BioPhorum members (authors) has developed and executed surveys focused on the activities and effort involved in a typical CLD campaign. An average of 27 members from different companies that participate in the BioPhorum CLD working group answered surveys covering three distinguishable stages of a standard CLD process: (1) Pre-transfection, including vector design and construction; (2) Transfection, spanning the initial introduction of vector into cells and subsequent selection and analysis of the pools; and (3) Single Cell Cloning and Lead Clone Selection, comprising methods of isolating single cells and confirming clonal origin, subsequent expansion and screening processes, and methods for identifying and banking lead clones. The surveys were very extensive, including a total of 341 questions split between antibody and complex molecule CLD processes. In this survey review, the authors interpret and highlight responses for antibody development and, where relevant, contrast complex molecule development challenges to provide a comprehensive industry perspective on the typical time and effort required to develop a CHO production cell line.

2.
J Biotechnol ; 374: 38-48, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37495115

RESUMO

Improved understanding of expression of recombinant immunoglobulin (IgG)-based therapies can decrease manufacturing process costs and bring down costs to patients. Deletion of C-terminal Lysine (C-Lys) from IgG molecules has been shown to greatly impact yield. This study set out to characterise structural components of IgG C-terminal variants which modulate protein expression by examination of the consequences of mutations at the C-terminal of IgG on expression and by the use of fluorescent C-terminal fragment fusion proteins. Cell-based and cell-free experiments were also implemented to characterise how the C-terminal differentially engages with cellular pathways to modulate expression. IgG variants engineered by removal of the C-terminal Lys were expressed at significantly lower rates than control variants by CHO (and HEK) cells. Engineered constructs of mCherry fused with short regions of the C-terminal regions of IgG mimicked the ordering of expressability observed for IgG variants. These fluorescent C-terminal fragment fusions offered the potential to profile how sequences (and point mutations) modified expression. Via combinations of cell and cell-free systems, screening across a range of variants of IgG and mCherry reporter constructs has shown that interactions between specific C-terminal amino acid sequences and the ribosome can regulate the rate and extent of expression. This study highlights the importance of amino acid sequence regulatory events determining the efficiency of production of desirable recombinant proteins, showing that wildtype C-terminal lysine is a necessary capping molecule for IgG1 expression. From a wider perspective, these data are especially significant towards the design of novel entities. The approach has also provided information about novel short C-terminal tags which may be used to provide selective synthesis of specific subunits in the production of multisubunit products. Alternative strategies for removing C-terminal amino acid heterogeneity whilst maintaining efficient rates of expression have been provided.


Assuntos
Lisina , Via Secretória , Humanos , Lisina/metabolismo , Sequência de Aminoácidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imunoglobulina G/metabolismo
3.
PDA J Pharm Sci Technol ; 74(2): 264-274, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31519780

RESUMO

The bioprocessing industry uses recombinant mammalian cell lines to generate therapeutic biologic drugs. To ensure consistent product quality of the therapeutic proteins, it is imperative to have a controlled production process. Regulatory agencies and the biotechnology industry consider cell line "clonal origin" an important aspect of maintaining process control. Demonstration of clonal origin of the cell substrate, or production cell line, has received considerable attention in the past few years, and the industry has improved methods and devised standards to increase the probability and/or assurance of clonal derivation. However, older production cell lines developed before the implementation of these methods, herein referred to as "legacy cell lines," may not meet current regulatory expectations for demonstration of clonal derivation. In this article, the members of the IQ Consortium Working Group on Clonality present our position that the demonstration of process consistency and product comparability of critical quality attributes throughout the development life cycle should be sufficient to approve a license application without additional genetic analysis to support clonal origin, even for legacy cell lines that may not meet current day clonal derivation standards. With this commentary, we discuss advantages and limitations of genetic testing methods to support clonal derivation of legacy cell lines and wish to promote a mutual understanding with the regulatory authorities regarding their optional use during early drug development, subsequent to Investigational New Drug (IND) application and before demonstration of product and process consistency at Biologics License Applications (BLA) submission.


Assuntos
Produtos Biológicos/síntese química , Produtos Biológicos/farmacologia , Desenvolvimento de Medicamentos/métodos , Testes Genéticos/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Desenvolvimento de Medicamentos/normas , Testes Genéticos/normas , Desenvolvimento de Programas/métodos , Desenvolvimento de Programas/normas , Sequenciamento Completo do Genoma/normas
4.
PDA J Pharm Sci Technol ; 72(4): 438-450, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29669815

RESUMO

Monoclonality of mammalian cell lines used for production of biologics is a regulatory expectation and one of the attributes assessed as part of a larger process to ensure consistent quality of the biologic. Historically, monoclonality has been demonstrated through statistics generated from limiting dilution cloning or through verified flow cytometry methods. A variety of new technologies are now on the market with the potential to offer more efficient and robust approaches to generating and documenting a clonal cell line.Here we present an industry perspective on approaches for the application of imaging and integration of that information into a regulatory submission to support a monoclonality claim. These approaches represent the views of a consortium of companies within the BioPhorum Development Group and include case studies utilising imaging technology that apply scientifically sound approaches and efforts in demonstrating monoclonality. By highlighting both the utility of these alternative approaches and the advantages they bring over the traditional methods, as well as their adoption by industry leaders, we hope to encourage acceptance of their use within the biologics cell line development space and provide guidance for regulatory submission using these alternative approaches.LAY ABSTRACT: In the manufacture of biologics produced in mammalian cells, one recommendation by regulatory agencies to help ensure product consistency, safety, and efficacy is to produce the material from a monoclonal cell line derived from a single, progenitor cell. The process by which monoclonality is assured can be supplemented with single-well plate images of the progenitor cell. Here we highlight the utility of that imaging technology, describe approaches to verify the validity of those images, and discuss how to analyze that information to support a biologic filing application. This approach serves as an industry perspective to increased regulatory interest within the scope of monoclonality for mammalian cell culture-derived biologics.


Assuntos
Produtos Biológicos/normas , Indústria Farmacêutica/métodos , Citometria de Fluxo/métodos , Tecnologia Farmacêutica/métodos , Animais , Técnicas de Cultura de Células , Linhagem Celular , Células Clonais/citologia , Mamíferos
5.
Mol Microbiol ; 106(2): 304-318, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28792086

RESUMO

Bacterial cell division involves the dynamic assembly of a diverse set of proteins that coordinate the invagination of the cell membrane and synthesis of cell wall material to create the new cell poles of the separated daughter cells. Penicillin-binding protein PBP 2B is a key cell division protein in Bacillus subtilis proposed to have a specific catalytic role in septal wall synthesis. Unexpectedly, we find that a catalytically inactive mutant of PBP 2B supports cell division, but in this background the normally dispensable PBP 3 becomes essential. Phenotypic analysis of pbpC mutants (encoding PBP 3) shows that PBP 2B has a crucial structural role in assembly of the division complex, independent of catalysis, and that its biochemical activity in septum formation can be provided by PBP 3. Bioinformatic analysis revealed a close sequence relationship between PBP 3 and Staphylococcus aureus PBP 2A, which is responsible for methicillin resistance. These findings suggest that mechanisms for rescuing cell division when the biochemical activity of PBP 2B is perturbed evolved prior to the clinical use of ß-lactams.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Penicilinas/metabolismo , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Divisão Celular , Farmacorresistência Bacteriana/genética , Genes Bacterianos/efeitos dos fármacos , Resistência a Meticilina/genética , Proteínas de Ligação às Penicilinas/genética , Penicilinas/farmacologia , Peptidil Transferases/genética , Staphylococcus aureus/genética , beta-Lactamas/metabolismo
6.
EMBO J ; 30(24): 4931-41, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21964069

RESUMO

Teichoic acids and acidic capsular polysaccharides are major anionic cell wall polymers (APs) in many bacteria, with various critical cell functions, including maintenance of cell shape and structural integrity, charge and cation homeostasis, and multiple aspects of pathogenesis. We have identified the widespread LytR-Cps2A-Psr (LCP) protein family, of previously unknown function, as novel enzymes required for AP synthesis. Structural and biochemical analysis of several LCP proteins suggest that they carry out the final step of transferring APs from their lipid-linked precursor to cell wall peptidoglycan (PG). In Bacillus subtilis, LCP proteins are found in association with the MreB cytoskeleton, suggesting that MreB proteins coordinate the insertion of the major polymers, PG and AP, into the cell wall.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Parede Celular/química , Polissacarídeos/biossíntese , Ácidos Teicoicos/biossíntese , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Genes Letais , Mutação , Polissacarídeos/química , Polissacarídeos/genética , Ácidos Teicoicos/química , Ácidos Teicoicos/genética
7.
Mol Microbiol ; 79(2): 503-22, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21219466

RESUMO

The YycG sensor histidine kinase co-ordinates cell wall remodelling with cell division in Gram-positive bacteria by controlling the transcription of genes for autolysins and their inhibitors. Bacillus subtilis YycG senses cell division and is enzymatically activated by associating with the divisome at the division septum. Here it is shown that the cytoplasmic PAS domain of this multi-domain transmembrane kinase is a determining factor translocating the kinase to the division septum. Furthermore, translocation to the division septum, per se, is insufficient to activate YycG, indicating that specific interactions and/or ligands produced there are required to stimulate kinase activity. N-terminal truncations of YycG lose negative regulation of their activity inferring that this regulation is accomplished through its transmembrane and extramembrane domains interacting with the membrane associated YycH and YycI proteins that do not localize to the divisome. The data indicate that YycG activity in non-dividing cells is suppressed by its interaction with YycH and YycI and its activation is co-ordinated to cell division in dividing cells by specific interactions that occur within the divisome.


Assuntos
Bacillus subtilis/fisiologia , Divisão Celular , Proteínas Quinases/metabolismo , Histidina Quinase , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas Quinases/genética , Deleção de Sequência
8.
Mol Microbiol ; 70(6): 1556-69, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19019154

RESUMO

Cell division in bacteria is governed by a complex cytokinetic machinery in which the key player is a tubulin homologue, FtsZ. Most rod-shaped bacteria divide precisely at mid-cell between segregated sister chromosomes. Selection of the correct site for cell division is thought to be determined by two negative regulatory systems: the nucleoid occlusion system, which prevents division in the vicinity of the chromosomes, and the Min system, which prevents inappropriate division at the cell poles. In Bacillus subtilis recruitment of the division inhibitor MinCD to cell poles depends on DivIVA, and these proteins were thought to be sufficient for Min function. We have now identified a novel component of the division-site selection system, MinJ, which bridges DivIVA and MinD. minJ mutants are impaired in division because MinCD activity is no longer restricted to cell poles. Although MinCD was thought to act specifically on FtsZ assembly, analysis of minJ and divIVA mutants showed that their block in division occurs downstream of FtsZ. The results support a model in which the main function of the Min system lies in allowing only a single round of division per cell cycle, and that MinCD acts at multiple levels to prevent inappropriate division.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/metabolismo
9.
Mol Microbiol ; 68(4): 1029-46, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18363795

RESUMO

The characteristic shape of bacterial cells is mainly determined by the cell wall, the synthesis of which is orchestrated by penicillin-binding proteins (PBPs). Rod-shaped bacteria have two distinct modes of cell wall synthesis, involved in cell elongation and cell division, which are believed to employ different sets of PBPs. A long-held question has been how these different modes of growth are co-ordinated in space and time. We have now identified the cell division protein, EzrA, and a newly discovered protein, GpsB, as key players in the elongation-division cycle of Bacillus subtilis. Mutations in these genes have a synthetic phenotype with defects in both cell division and cell elongation. They also have an unusual bulging phenotype apparently due to a failure in properly completing cell pole maturation. We show that these phenotypes are tightly associated with disturbed localization of the major transglycosylase/transpeptidase of the cell, PBP1. EzrA and GpsB have partially differentiated roles in the localization cycle of PBP1, with EzrA mainly promoting the recruitment of PBP1 to division sites, and GpsB facilitating its removal from the cell pole, after the completion of pole maturation.


Assuntos
Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas de Ligação às Penicilinas/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Divisão Celular/genética , Genes Letais , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Dados de Sequência Molecular , Mutação , Proteínas de Ligação às Penicilinas/análise , Proteínas de Ligação às Penicilinas/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...